Exemple #1
0
    def setup_class(cls):
        covx = np.array([[1.0, 0.5], [0.5, 1.0]])
        mu3 = [-1, 0., 2.]
        cov3 = np.array([[1., 0.5, 0.75], [0.5, 1.5, 0.6], [0.75, 0.6, 2.]])
        cls.mu3 = mu3
        cls.cov3 = cov3

        mvn3 = MVNormal(mu3, cov3)
        mvn3c = MVNormal(np.array([0, 0, 0]), cov3)
        cls.mvn3 = mvn3
        cls.mvn3c = mvn3c
    def __init__(self):
        covx = np.array([[1.0, 0.5], [0.5, 1.0]])
        mu3 = [-1, 0., 2.]
        cov3 = np.array([[ 1.  ,  0.5 ,  0.75],
                         [ 0.5 ,  1.5 ,  0.6 ],
                         [ 0.75,  0.6 ,  2.  ]])
        self.mu3 = mu3
        self.cov3 = cov3

        mvn3 = MVNormal(mu3, cov3)
        mvn3c = MVNormal(np.array([0,0,0]), cov3)
        self.mvn3 = mvn3
        self.mvn3c = mvn3c
    def test_mvn_pdf(self):
        cov3 = self.cov3
        mvn3 = self.mvn3
        mvn3c = self.mvn3c

        r_val = [-7.667977543898155, -6.917977543898155, -5.167977543898155]
        assert_array_almost_equal( mvn3.logpdf(cov3), r_val, decimal = 14)
        #decimal 18
        r_val = [0.000467562492721686, 0.000989829804859273, 0.005696077243833402]
        assert_array_almost_equal( mvn3.pdf(cov3), r_val, decimal = 17)
        #cheating new mean, same cov, too dangerous, got wrong instance in tests
        #mvn3.mean = np.array([0,0,0])
        mvn3b = MVNormal(np.array([0,0,0]), cov3)
        r_val = [0.02914269740502042, 0.02269635555984291, 0.01767593948287269]
        assert_array_almost_equal( mvn3b.pdf(cov3), r_val, decimal = 16)
Exemple #4
0
    def test_mvn_pdf(self):
        cov3 = self.cov3
        mvn3 = self.mvn3

        r_val = [-7.667977543898155, -6.917977543898155, -5.167977543898155]
        assert_allclose(mvn3.logpdf(cov3), r_val, rtol=1e-13)

        r_val = [
            0.000467562492721686, 0.000989829804859273, 0.005696077243833402
        ]
        assert_allclose(mvn3.pdf(cov3), r_val, rtol=1e-13)

        mvn3b = MVNormal(np.array([0, 0, 0]), cov3)
        r_val = [0.02914269740502042, 0.02269635555984291, 0.01767593948287269]
        assert_allclose(mvn3b.pdf(cov3), r_val, rtol=1e-13)
    def test_mvn_pdf(self):
        cov3 = self.cov3
        mvn3 = self.mvn3
        mvn3c = self.mvn3c

        r_val = [-7.667977543898155, -6.917977543898155, -5.167977543898155]
        assert_array_almost_equal( mvn3.logpdf(cov3), r_val, decimal = 14)
        #decimal 18
        r_val = [0.000467562492721686, 0.000989829804859273, 0.005696077243833402]
        assert_array_almost_equal( mvn3.pdf(cov3), r_val, decimal = 17)
        #cheating new mean, same cov, too dangerous, got wrong instance in tests
        #mvn3.mean = np.array([0,0,0])
        mvn3b = MVNormal(np.array([0,0,0]), cov3)
        r_val = [0.02914269740502042, 0.02269635555984291, 0.01767593948287269]
        assert_array_almost_equal( mvn3b.pdf(cov3), r_val, decimal = 16)
Exemple #6
0
def gen_data(mu, cov, n, lowd, highd):
    lams = MVNormal(mu, cov).rvs(n)
    ps = np.empty_like(lams)
    ps = di.poisson.rvs(
        di.uniform.rvs(lowd, highd - lowd, size=lams.shape) * np.exp(lams))
    return ps