kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b arrvs = ar_generator() ##arma = ARIMA() ##res = arma.fit(arrvs[0], 4, 0) arma = ARIMA(arrvs[0]) res = arma.fit((4,0, 0)) print(res[0]) acf1 = acf(arrvs[0]) acovf1b = acovf(arrvs[0], unbiased=False) acf2 = autocorr(arrvs[0]) acf2m = autocorr(arrvs[0]-arrvs[0].mean()) print(acf1[:10]) print(acovf1b[:10]) print(acf2[:10]) print(acf2m[:10]) x = arma_generate_sample([1.0, -0.8], [1.0], 500) print(acf(x)[:20])
kwargs.setdefault('linestyle', 'None') d = self.plot(lags, c, **kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b arrvs = ar_generator() ##arma = ARIMA() ##res = arma.fit(arrvs[0], 4, 0) arma = ARIMA(arrvs[0]) res = arma.fit((4, 0, 0)) print(res[0]) acf1 = acf(arrvs[0]) acovf1b = acovf(arrvs[0], unbiased=False) acf2 = autocorr(arrvs[0]) acf2m = autocorr(arrvs[0] - arrvs[0].mean()) print(acf1[:10]) print(acovf1b[:10]) print(acf2[:10]) print(acf2m[:10]) x = arma_generate_sample([1.0, -0.8], [1.0], 500) print(acf(x)[:20]) import statsmodels.api as sm
np.minimum(np.abs(start_params_mle[:-1]), 0.75)) print 'conditional least-squares' #print rhohat2 print 'with mle' arest2.nar = 2 arest2.nma = 2 # res = arest2.fit_mle(start_params=start_params_mle, method='nm') #no order in fit print res.params rhohat2, cov_x2a, infodict, mesg, ier = arest2.fit((2, 2)) print '\nARIMA_old' arest = ARIMA_old(y22) rhohat1, cov_x1, infodict, mesg, ier = arest.fit((2, 0, 2)) print rhohat1 print np.sqrt(np.diag(cov_x1)) err1 = arest.errfn(x=y22) print np.var(err1) print 'bse ls, formula not checked' print np.sqrt(np.diag(cov_x1)) * err1.std() print 'bsejac for mle' #print arest2.bsejac #TODO:check bsejac raises singular matrix linalg error #in model.py line620: return np.linalg.inv(np.dot(jacv.T, jacv)) print '\nyule-walker' print sm.regression.yule_walker(y22, order=2, inv=True) print '\nArmamle_old'
* np.minimum(np.abs(start_params_mle[:-1]),0.75)) print('conditional least-squares') #print rhohat2 print('with mle') arest2.nar = 2 arest2.nma = 2 # res = arest2.fit_mle(start_params=start_params_mle, method='nm') #no order in fit print(res.params) rhohat2, cov_x2a, infodict, mesg, ier = arest2.fit((2,2)) print('\nARIMA_old') arest = ARIMA_old(y22) rhohat1, cov_x1, infodict, mesg, ier = arest.fit((2,0,2)) print(rhohat1) print(np.sqrt(np.diag(cov_x1))) err1 = arest.errfn(x=y22) print(np.var(err1)) print('bse ls, formula not checked') print(np.sqrt(np.diag(cov_x1))*err1.std()) print('bsejac for mle') #print arest2.bsejac #TODO:check bsejac raises singular matrix linalg error #in model.py line620: return np.linalg.inv(np.dot(jacv.T, jacv)) print('\nyule-walker') print(sm.regression.yule_walker(y22, order=2, inv=True)) print('\nArmamle_old')