Exemple #1
0
    def get_tamplitude(self):
        """ return the time a the peak in the current trace"""

        #stf.peak_index() does not update cursors!!!
        self.update()

        return stf.peak_index()*self._dt
Exemple #2
0
def peakalign():
    """
    Shift the selected traces in the currently active channel to align the peaks. 

    """

    # Measure peak indices in the selected traces
    pidx = []
    for i in stf.get_selected_indices():
        stf.set_trace(i)
        pidx.append(stf.peak_index())

    # Find the earliest peak
    pref = min(pidx)

    # Align the traces
    j = 0
    shifted_traces = []
    for i in stf.get_selected_indices():
        stf.set_trace(i)
        shift = int(pref - pidx[j])
        shifted_traces.append(np.roll(stf.get_trace(), shift))
        j += 1

    return stf.new_window_list(shifted_traces)
Exemple #3
0
def ppr_peak():
    # Get function values
    decay_func = stf.leastsq(0)

    # Create time from fit start to next peak
    x = np.arange(stf.get_fit_start(), stf.peak_index())

    # Create fitted curve up until peak
    trace = [(decay_func['Offset'] + decay_func['Amp_0'] * np.exp(-(ind/10.0)/decay_func['Tau_0'])) for ind, val in enumerate(x)]
    
    # Find peak value
    peak_val = stf.get_peak()-stf.get_base()
    print('The measured peak is {0} pA'.format(peak_val))

    # Find value of fit at peak
    fit_peak = trace[-1] - stf.get_base()
    print('Tau is {0} pA'.format(decay_func['Tau_0']))
    print('The fitted peak is {0} pA'.format(fit_peak))
    print('The baseline is {0} pA'.format(stf.get_base()))
    # stf.new_window(trace)

    final_peak = peak_val - fit_peak
    print('The final peak is {0} pA'.format(final_peak))

    return True
Exemple #4
0
    def get_tamplitude(self):
        """ return the time a the peak in the current trace"""

        #stf.peak_index() does not update cursors!!!
        self.update()

        return stf.peak_index() * self._dt
def fit_experiment(params, pulse_length, function_to_fit):

    num_sweeps = stf.get_size_channel()
    stf.set_channel(0)
    stf.set_trace(0)

    #jjm_analysis.set_params(params);
    #stf.measure();
    #this is in samples
    #peak_index = stf.peak_index();
    #stf.set_fit_start(peak_index, is_time=False);
    #fit_start_time = peak_index*stf.get_sampling_interval();
    #stf.set_fit_end(fit_start_time+pulse_length-(10*stf.get_sampling_interval()), is_time=True);
    #fit_func = stf.leastsq(function_to_fit);
    #fit_func['Baseline(pA)']=stf.get_base();
    #fit_df = pd.DataFrame(fit_func, index=[0]);

    fits = []
    traces = []
    for x in range(0, num_sweeps):
        stf.set_trace(x)
        jjm_analysis.set_params(params)
        stf.measure()
        #this is in samples
        peak_index = stf.peak_index()
        stf.set_fit_start(peak_index, is_time=False)
        fit_start_time = peak_index * stf.get_sampling_interval()
        stf.set_fit_end(fit_start_time + pulse_length -
                        (10 * stf.get_sampling_interval()),
                        is_time=True)
        sweep_fit = stf.leastsq(function_to_fit)
        sweep_fit['Baseline(pA)'] = stf.get_base()
        fits.append(sweep_fit)
        traces.append(x)

    fit_df = pd.DataFrame(fits)
    return (fit_df)
Exemple #6
0
def glu_iv(pulses=13, subtract_base=True):
    """Calculates an iv from a repeated series of fast application and
    voltage pulses. 

    Keyword arguments:
    pulses        -- Number of pulses for the iv.
    subtract_base -- If True (default), baseline will be subtracted.
    
    Returns:
    True if successful.
    """

    # Some ugly definitions for the time being
    # Cursors are in ms here.
    gFitEnd = 330.6  # fit end cursor is variable
    gFSelect = 0  # Monoexp
    gDictSize = stf.leastsq_param_size(
        gFSelect) + 2  # Parameters, chisqr, peak value
    gBaseStart = 220.5  # Start and end of the baseline before the control pulse, in ms
    gBaseEnd = 223.55
    gPeakStart = 223.55  # Start and end of the peak cursors for the control pulse, in ms
    gPeakEnd = 253.55

    if (gDictSize < 0):
        print('Couldn\'t retrieve function id=%d, aborting now.' % gFSelect)
        return False

    if (not (stf.check_doc())):
        print('Couldn\'t find an open file; aborting now.')
        return False

    # analyse iv, subtract baseline if requested:
    ivtools.analyze_iv(pulses)
    if (subtract_base == True):
        if (not (stf.set_base_start(gBaseStart, True))): return False
        if (not (stf.set_base_end(gBaseEnd, True))): return False
        stf.measure()
        stf.select_all()
        stf.subtract_base()

    # set cursors:
    if (not (stf.set_peak_start(gPeakStart, True))): return False
    if (not (stf.set_peak_end(gPeakEnd, True))): return False
    if (not (stf.set_base_start(gBaseStart, True))): return False
    if (not (stf.set_base_end(gBaseEnd, True))): return False
    if (not (stf.set_fit_end(gFitEnd, True))): return False

    if (not (stf.set_peak_mean(3))): return False
    if (not (stf.set_peak_direction("both"))): return False

    # A list for dictionary keys and values:
    dict_keys = []
    dict_values = np.empty((gDictSize, stf.get_size_channel()))
    firstpass = True
    for n in range(0, stf.get_size_channel()):
        if (stf.set_trace(n) == False):
            print('Couldn\'t set a new trace; aborting now.')
            return False

        print('Analyzing trace %d of %d' % (n + 1, stf.get_size_channel()))
        # set the fit window cursors:
        if (not (stf.set_fit_start(stf.peak_index()))): return False

        # Least-squares fitting:
        p_dict = stf.leastsq(gFSelect)

        if (p_dict == 0):
            print('Couldn\'t perform a fit; aborting now.')
            return False

        # Create an empty list:
        tempdict_entry = []
        row = 0
        for k, v in p_dict.iteritems():
            if (firstpass == True):
                dict_keys.append(k)
            dict_values[row][n] = v
            row = row + 1

        if (firstpass):
            dict_keys.append("Peak amplitude")
        dict_values[row][n] = stf.get_peak() - stf.get_base()

        firstpass = False

    retDict = dict()
    # Create the dictionary for the table:
    entry = 0
    for elem in dict_keys:
        retDict[elem] = dict_values[entry].tolist()
        entry = entry + 1

    return stf.show_table_dictlist(retDict)
Exemple #7
0
def glu_iv( pulses = 13, subtract_base=True ):
    """Calculates an iv from a repeated series of fast application and
    voltage pulses. 

    Keyword arguments:
    pulses        -- Number of pulses for the iv.
    subtract_base -- If True (default), baseline will be subtracted.
    
    Returns:
    True if successful.
    """

    # Some ugly definitions for the time being
    # Cursors are in ms here.
    gFitEnd = 330.6 # fit end cursor is variable
    gFSelect  =  0 # Monoexp
    gDictSize =  stf.leastsq_param_size( gFSelect ) + 2 # Parameters, chisqr, peak value
    gBaseStart  = 220.5 # Start and end of the baseline before the control pulse, in ms
    gBaseEnd    = 223.55
    gPeakStart  = 223.55 # Start and end of the peak cursors for the control pulse, in ms
    gPeakEnd = 253.55 
    
    if ( gDictSize < 0 ):
        print('Couldn\'t retrieve function id=%d, aborting now.'%gFSelect)
        return False        
    
    if ( not(stf.check_doc()) ):
        print('Couldn\'t find an open file; aborting now.')
        return False
    
    # analyse iv, subtract baseline if requested:
    ivtools.analyze_iv( pulses )
    if ( subtract_base == True ):
        if ( not(stf.set_base_start( gBaseStart, True )) ): return False
        if ( not(stf.set_base_end( gBaseEnd, True )) ): return False
        stf.measure()
        stf.select_all()
        stf.subtract_base()
    
    # set cursors:
    if ( not(stf.set_peak_start( gPeakStart, True )) ): return False
    if ( not(stf.set_peak_end( gPeakEnd, True )) ): return False
    if ( not(stf.set_base_start( gBaseStart, True )) ): return False
    if ( not(stf.set_base_end( gBaseEnd, True )) ): return False
    if ( not(stf.set_fit_end( gFitEnd, True )) ): return False
    
    if ( not(stf.set_peak_mean( 3 )) ): return False
    if ( not(stf.set_peak_direction( "both" )) ): return False

    # A list for dictionary keys and values:
    dict_keys = []
    dict_values = np.empty( (gDictSize, stf.get_size_channel()) )
    firstpass = True
    for n in range( 0, stf.get_size_channel() ):
        if ( stf.set_trace( n ) == False ):
            print('Couldn\'t set a new trace; aborting now.')
            return False
        
        print('Analyzing trace %d of %d'%( n+1, stf.get_size_channel() ) )
        # set the fit window cursors:
        if ( not(stf.set_fit_start( stf.peak_index() )) ): return False
        
        # Least-squares fitting:
        p_dict = stf.leastsq( gFSelect )
        
        if ( p_dict == 0 ):
            print('Couldn\'t perform a fit; aborting now.')
            return False
            
        # Create an empty list:
        tempdict_entry = []
        row = 0
        for k, v in p_dict.iteritems():
            if ( firstpass == True ):
                dict_keys.append( k )
            dict_values[row][n] = v 
            row = row+1
        
        if ( firstpass ):
            dict_keys.append( "Peak amplitude" )
        dict_values[row][n] = stf.get_peak()-stf.get_base()
        
        firstpass = False
    
    retDict = dict()
    # Create the dictionary for the table:
    entry = 0
    for elem in dict_keys:
        retDict[ elem ] = dict_values[entry].tolist()
        entry = entry+1
   
    return stf.show_table_dictlist( retDict )