Exemple #1
0
def load():

    # wx Widgets to create a file selection window
    fname = wx.FileSelector(
        "Import Ephus file",
        default_extension="Ephus XSG",
        default_path=".",
        wildcard="Matlab Ephus xsg. text import (*.xsg)|*.xsg",
        flags=wx.OPEN | wx.FILE_MUST_EXIST)

    data_sio = sio.loadmat(fname, squeeze_me=True)
    data = data_sio.get('data')
    trace = data['ephys'].item().item()[0]
    header = data_sio.get('header')
    dt = header['ephys'].item().item()[0]['sampleRate'].item()

    stf.new_window(trace[1:])
    stf.set_sampling_interval(1000 / np.double(dt))
    stf.set_xunits('ms')
    stf.set_yunits('pA')
Exemple #2
0
def loadtxt(freq=400):
    """
    Loads an ASCII file with extension *.GoR. This file contains 
    ratiometric fluorescent measurements (i.e Green over Red fluorescence) 
    saved in one column. This function opens a new Stimfit window and
    sets the x-units to "ms" and y-units to "Delta G over R".   
    Arguments:
    
    freq  -- (float) the sampling rate (in Hz) for fluorescence acquistion.
             the default value is 400 Hz
    """
    
    fname = wx.FileSelector("Import Ca transients" , 
        default_extension="Ratiometric" ,
        default_path="." , 
        wildcard = "Ratiometric fluorescence (*.GoR)|*.GoR" , 
        flags = wx.OPEN | wx.FILE_MUST_EXIST)

    stf.new_window( np.loadtxt(fname) )
    stf.set_xunits('ms')
    stf.set_yunits('Delta G/R')

    stf.set_sampling_interval(1.0/freq*1000) # acquisition at 400 Hz
Exemple #3
0
def loadtxt(freq=400):
    """
    Loads an ASCII file with extension *.GoR. This file contains 
    ratiometric fluorescent measurements (i.e Green over Red fluorescence) 
    saved in one column. This function opens a new Stimfit window and
    sets the x-units to "ms" and y-units to "Delta G over R".   
    Arguments:
    
    freq  -- (float) the sampling rate (in Hz) for fluorescence acquistion.
             the default value is 400 Hz
    """

    fname = wx.FileSelector("Import Ca transients",
                            default_extension="Ratiometric",
                            default_path=".",
                            wildcard="Ratiometric fluorescence (*.GoR)|*.GoR",
                            flags=wx.OPEN | wx.FILE_MUST_EXIST)

    stf.new_window(np.loadtxt(fname))
    stf.set_xunits('ms')
    stf.set_yunits('Delta G/R')

    stf.set_sampling_interval(1.0 / freq * 1000)  # acquisition at 400 Hz
Exemple #4
0
def loadmat():
    """
    Load electrophysiology recordings from ephysIO
    HDF5-based Matlab v7.3 (.mat) files 
    """

    # Import required modules for file IO
    from Tkinter import Tk
    import tkFileDialog
    from gc import collect

    # Use file open dialog to obtain file path
    root = Tk()
    opt = dict(defaultextension='.mat',
               filetypes=[('MATLAB v7.3 (HDF5) file', '*.mat'),
                          ('All files', '*.*')])
    if 'loadcwd' not in globals():
        global loadcwd
    else:
        opt['initialdir'] = loadcwd
    filepath = tkFileDialog.askopenfilename(**opt)
    root.withdraw()

    if filepath != '':

        # Move to file directory and check file version
        loadcwd = filepath.rsplit('/', 1)[0]
        from os import chdir
        print filepath
        chdir(loadcwd)

        # Load data into python
        import ephysIO
        data = ephysIO.MATload(filepath)

        # Display data in Stimfit
        import stf
        if data.get('xdiff') > 0:
            if data.get('yunit') == "V":
                stf.new_window_list(1.0e+3 * np.array(data.get('array')[1::]))
                stf.set_yunits('m' + data.get('yunit'))
            elif data.get('yunit') == "A":
                stf.new_window_list(1.0e+12 * data.get('array')[1::])
                stf.set_yunits('p' + data.get('yunit'))
            else:
                stf.new_window_list(data.get('array')[1::])
                stf.set_yunits(data.get('yunit'))
            stf.set_sampling_interval(1.0e+3 * data.get('xdiff'))
            stf.set_xunits('m' + data.get('xunit'))
            stf.set_trace(0)
            stf.set_recording_comment('\n'.join(data['notes']))
            if data['saved'] != '':
                date = data['saved'][0:8]
                date = tuple(map(int, (date[0:4], date[4:6], date[6:8])))
                stf.set_recording_date('%s-%s-%s' % date)
                time = data['saved'][9::]
                time = tuple(map(int, (time[0:2], time[2:4], time[4:6])))
                stf.set_recording_time('%i-%i-%i' % time)
        elif data.get('xdiff') == 0:
            raise ValueError("Sample interval is not constant")

    else:

        data = {}

    collect()

    return
Exemple #5
0
def loadflex():
    """
    Load raw traces of FlexStation data from CSV files 
    """

    # Import required modules
    from os import chdir
    import csv
    import stf
    import numpy as np
    from Tkinter import Tk
    import tkFileDialog
    from gc import collect

    # Use file open dialog to obtain file path
    root = Tk()
    opt = dict(defaultextension='.csv',
               filetypes=[('Comma Separated Values file', '*.csv'),
                          ('All files', '*.*')])
    if 'loadcwd' not in globals():
        global loadcwd
    else:
        opt['initialdir'] = loadcwd
    filepath = tkFileDialog.askopenfilename(**opt)
    root.withdraw()

    if filepath != '':

        # Move to file directory and check file version
        loadcwd = filepath.rsplit('/', 1)[0]
        print filepath
        chdir(loadcwd)

        # Load data into numpy array
        with open(filepath, 'rb') as csvfile:
            csvtext = csv.reader(csvfile)
            data = []
            for row in csvtext:
                data.append(row)
        data = np.array(data)
        time = data.T[0][1::].astype(np.float)
        sampling_interval = np.mean(np.diff(time))
        comment = 'Temperature: %d degrees Centigrade' % np.mean(
            data.T[1][1::].astype(np.float))

        # Plot fluorescence measurements
        well = data.T[2::, 0]
        data = data.T[2::, 1::]
        ridx = []
        idx = []
        for i in range(96):
            if np.all(data[i] == ''):
                ridx.append(i)
            else:
                idx.append(i)
        data = np.delete(data, ridx, 0)
        data[[data == '']] = 'NaN'
        data[[data == ' ']] = 'NaN'
        delrow = np.any(data == 'NaN', 0)
        didx = []
        for i in range(np.size(data, 1)):
            if np.any(data[::, i] == 'NaN', 0):
                didx.append(i)
        time = np.delete(time, didx, 0)
        data = np.delete(data, didx, 1)
        data = data.astype(np.float)
        stf.new_window_list(data)

        # Set x-units and sampling interval
        stf.set_xunits('ms')
        stf.set_yunits(' ')
        stf.set_sampling_interval(1000 * sampling_interval)

        # Record temperature
        comment += '\nTr\tWell'
        for i in range(len(idx)):
            comment += '\n%i\t%s' % (i + 1, well[idx[i]])
        comment += '\nInitial time point: %.3g' % time[0]
        print comment
        stf.set_recording_comment(comment)

    else:

        data = {}

    collect()

    return
Exemple #6
0
def loadacq4(channel=1):
    """
    Load electrophysiology recording data from acq4 hdf5 (.ma) files.
    By default the primary recording channel is loaded.  
    
    If the file is in a folder entitled 000, loadacq4 will load
    the recording traces from all sibling folders (000,001,002,...)
    """

    # Import required modules for file IO
    from Tkinter import Tk
    import tkFileDialog
    from gc import collect

    # Use file open dialog to obtain file path
    root = Tk()
    opt = dict(defaultextension='.ma',
               filetypes=[('ACQ4 (HDF5) file', '*.ma'), ('All files', '*.*')])
    if 'loadcwd' not in globals():
        global loadcwd
    else:
        opt['initialdir'] = loadcwd
    filepath = tkFileDialog.askopenfilename(**opt)
    root.withdraw()

    if filepath != '':

        # Load data into python
        loadcwd = filepath.rsplit('/', 1)[0]
        import ephysIO
        data = ephysIO.MAload(filepath, channel)
        print filepath

        # Display data in Stimfit
        import stf
        if data.get('yunit') == 'A':
            stf.new_window_list(1.0e+12 * data.get('array')[1::])
            stf.set_yunits('p' + data.get('yunit'))
        elif data.get('yunit') == 'V':
            stf.new_window_list(1.0e+3 * data.get('array')[1::])
            stf.set_yunits('m' + data.get('yunit'))
        stf.set_sampling_interval(1.0e+3 * data['xdiff'])
        stf.set_xunits('m' + data.get('xunit'))
        stf.set_trace(0)

        # Import metadata into stimfit
        stf.set_recording_comment('\n'.join(data['notes']))
        date = data['saved'][0:8]
        date = tuple(map(int, (date[0:4], date[4:6], date[6:8])))
        stf.set_recording_date('%s-%s-%s' % date)
        time = data['saved'][9::]
        time = tuple(map(int, (time[0:2], time[2:4], time[4:6])))
        stf.set_recording_time('%i-%i-%i' % time)

    else:

        data = {}

    collect()

    return
Exemple #7
0
def combiRec(offset):
    import os
    import ephysIO

    # Import required modules for file IO
    from Tkinter import Tk
    import tkFileDialog
    from gc import collect

    # Use file open dialog to obtain file path
    root = Tk()
    opt = dict(defaultextension='.phy',
               filetypes=[('ephysIO (HDF5) file', '*.phy'),
                          ('All files', '*.*')])
    if 'loadcwd' not in globals():
        global loadcwd
    else:
        opt['initialdir'] = loadcwd
    filepath = tkFileDialog.askopenfilename(**opt)
    root.withdraw()

    # Set this to file name prefix (i.e. the protocol name)
    filename = filepath.rsplit('/', 1)[-1]  # e.g. "1.phy"
    dirpath = filepath.rsplit(
        '/', 1)[0]  # e.g. "<path>/pair_000/dual_mixed_eEPSC_000"
    protocol = (dirpath.rsplit('/',
                               1)[1]).rsplit('_',
                                             1)[0]  # e.g. "dual_mixed_eEPSC"
    rootdir = dirpath.rsplit('/', 1)[0]  # e.g. "<path>/pair_000/"

    # Load data from channel 1
    os.chdir(rootdir)
    count = 0
    allwaves = []
    notes = ''
    holding = []
    while True:
        wavename = protocol + "_" + ("000" + str(count))[-3::]
        if os.path.isdir(wavename):
            os.chdir(wavename)
            data = ephysIO.PHYload(filename)
            allwaves.append(1.0e+12 * data.get("array")[1])
            notes += notes + 'Wave %d\n' % (count) + '\n'.join(
                data['notes']) + '\n\n'
            #print data['notes'][9][10::]
            holding.append(eval(data['notes'][9][10::]))
            count += 1
            os.chdir("..")
        else:
            break
    stf.new_window_list(allwaves)
    stf.set_xunits('m' + data.get('xunit'))
    stf.set_yunits('p' + data.get('yunit'))
    stf.set_sampling_interval(1.0e+3 * data.get('xdiff'))
    stf.set_recording_comment(notes)
    gwaves = [stf.get_trace(i) / (holding[i] - offset) for i in range(count)]
    stf.new_window_list(gwaves)
    stf.set_recording_comment('Mixed AMPA/NMDA-mediated conductance')
    gnmda = [stf.get_trace(i) - stf.get_trace(0) for i in range(count)]
    stf.new_window_list(gnmda)
    stf.set_recording_comment('NMDA-mediated conductance')
    ivnmda = [stf.get_trace(i) * (holding[i] - offset) for i in range(count)]
    stf.new_window_list(ivnmda)
    stf.set_recording_comment('NMDA-mediated current')

    return holding