stk.MoleculeRecord( topology_graph=get_topology_graph(7), ).with_fitness_value(100), stk.MoleculeRecord( topology_graph=get_topology_graph(7), ).with_fitness_value(100), stk.MoleculeRecord( topology_graph=get_topology_graph(9), ).with_fitness_value(1), ) @pytest.fixture( params=( CaseData( selector=stk.Best(), population=population1, selected=( stk.Batch( records=(population1[0], ), fitness_values={population1[0]: 10}, key_maker=stk.Inchi(), ), stk.Batch( records=(population1[1], ), fitness_values={population1[1]: 9}, key_maker=stk.Inchi(), ), stk.Batch( records=(population1[2], ), fitness_values={population1[2]: 2},
stk.MoleculeRecord( topology_graph=get_topology_graph(3), ).with_fitness_value(9), stk.MoleculeRecord( topology_graph=get_topology_graph(4), ).with_fitness_value(2), stk.MoleculeRecord( topology_graph=get_topology_graph(5), ).with_fitness_value(1), stk.MoleculeRecord( topology_graph=get_topology_graph(6), ).with_fitness_value(1), ) @pytest.fixture( scope='session', params=(lambda population: CaseData( selector=stk.RemoveMolecules( remover=stk.Best(2), selector=stk.Best(), ), population=population, selected=( stk.Batch( records=(population[2], ), fitness_values={population[2]: 2}, key_maker=stk.Inchi(), ), stk.Batch( records=(population[3], ), fitness_values={population[3]: 1}, key_maker=stk.Inchi(), ), stk.Batch(
topology_graph=get_topology_graph(2), ).with_fitness_value(10), stk.MoleculeRecord( topology_graph=get_topology_graph(3), ).with_fitness_value(9), stk.MoleculeRecord( topology_graph=get_topology_graph(4), ).with_fitness_value(2), stk.MoleculeRecord( topology_graph=get_topology_graph(5), ).with_fitness_value(1), stk.MoleculeRecord( topology_graph=get_topology_graph(6), ).with_fitness_value(1), ) @pytest.fixture( params=(CaseData( selector=stk.FilterBatches( filter=stk.Best(4), selector=stk.Best(), ), population=population1, selected=( stk.Batch( records=(population1[0], ), fitness_values={population1[0]: 10}, key_maker=stk.Inchi(), ), stk.Batch( records=(population1[1], ), fitness_values={population1[1]: 9}, key_maker=stk.Inchi(), ), stk.Batch(
).with_fitness_value(2), stk.MoleculeRecord( topology_graph=get_topology_graph(5), ).with_fitness_value(1), stk.MoleculeRecord( topology_graph=get_topology_graph(6), ).with_fitness_value(1), ) @pytest.fixture( params=( CaseData( selector=stk.RemoveBatches( remover=stk.Worst(4), selector=stk.Best(), ), population=population1, selected=( stk.Batch( records=(population1[0], ), fitness_values={population1[0]: 10}, key_maker=stk.Inchi(), ), ), ), ), ) def remove_batches(request): return request.param
def main(): parser = argparse.ArgumentParser() parser.add_argument('--mongodb_uri', help='The MongoDB URI for the database to connect to.', default='mongodb://localhost:27017/') args = parser.parse_args() logging.basicConfig(level=logging.INFO) # Use a random seed to get reproducible results. random_seed = 4 generator = np.random.RandomState(random_seed) logger.info('Making building blocks.') # Load the building block databases. fluoros = tuple( get_building_blocks( path=pathlib.Path(__file__).parent / 'fluoros.txt', functional_group_factory=stk.FluoroFactory(), )) bromos = tuple( get_building_blocks( path=pathlib.Path(__file__).parent / 'bromos.txt', functional_group_factory=stk.BromoFactory(), )) initial_population = tuple(get_initial_population(fluoros, bromos)) # Write the initial population. for i, record in enumerate(initial_population): write(record.get_molecule(), f'initial_{i}.mol') client = pymongo.MongoClient(args.mongodb_uri) db = stk.ConstructedMoleculeMongoDb(client) fitness_db = stk.ValueMongoDb(client, 'fitness_values') # Plot selections. generation_selector = stk.Best( num_batches=25, duplicate_molecules=False, ) stk.SelectionPlotter('generation_selection', generation_selector) mutation_selector = stk.Roulette( num_batches=5, random_seed=generator.randint(0, 1000), ) stk.SelectionPlotter('mutation_selection', mutation_selector) crossover_selector = stk.Roulette( num_batches=3, batch_size=2, random_seed=generator.randint(0, 1000), ) stk.SelectionPlotter('crossover_selection', crossover_selector) fitness_calculator = stk.PropertyVector( property_functions=( get_num_rotatable_bonds, get_complexity, get_num_bad_rings, ), input_database=fitness_db, output_database=fitness_db, ) fitness_normalizer = stk.NormalizerSequence( fitness_normalizers=( # Prevent division by 0 error in DivideByMean, by ensuring # a value of each property to be at least 1. stk.Add((1, 1, 1)), stk.DivideByMean(), # Obviously, because all coefficients are equal, the # Multiply normalizer does not need to be here. However, # it's here to show that you can easily change the relative # importance of each component of the fitness value, by # changing the values of the coefficients. stk.Multiply((1, 1, 1)), stk.Sum(), stk.Power(-1), ), ) ea = stk.EvolutionaryAlgorithm( num_processes=1, initial_population=initial_population, fitness_calculator=fitness_calculator, mutator=stk.RandomMutator( mutators=( stk.RandomBuildingBlock( building_blocks=fluoros, is_replaceable=is_fluoro, random_seed=generator.randint(0, 1000), ), stk.SimilarBuildingBlock( building_blocks=fluoros, is_replaceable=is_fluoro, random_seed=generator.randint(0, 1000), ), stk.RandomBuildingBlock( building_blocks=bromos, is_replaceable=is_bromo, random_seed=generator.randint(0, 1000), ), stk.SimilarBuildingBlock( building_blocks=bromos, is_replaceable=is_bromo, random_seed=generator.randint(0, 1000), ), ), random_seed=generator.randint(0, 1000), ), crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ), generation_selector=generation_selector, mutation_selector=mutation_selector, crossover_selector=crossover_selector, fitness_normalizer=fitness_normalizer, ) logger.info('Starting EA.') generations = [] for generation in ea.get_generations(50): for record in generation.get_molecule_records(): db.put(record.get_molecule()) generations.append(generation) # Write the final population. for i, record in enumerate(generation.get_molecule_records()): write(record.get_molecule(), f'final_{i}.mol') logger.info('Making fitness plot.') # Normalize the fitness values across the entire EA before # plotting the fitness values. generations = tuple( normalize_generations( fitness_calculator=fitness_calculator, fitness_normalizer=fitness_normalizer, generations=generations, )) fitness_progress = stk.ProgressPlotter( generations=generations, get_property=lambda record: record.get_fitness_value(), y_label='Fitness Value', ) fitness_progress.write('fitness_progress.png') fitness_progress.get_plot_data().to_csv('fitness_progress.csv') logger.info('Making rotatable bonds plot.') rotatable_bonds_progress = stk.ProgressPlotter( generations=generations, get_property=lambda record: get_num_rotatable_bonds(record. get_molecule()), y_label='Number of Rotatable Bonds', ) rotatable_bonds_progress.write('rotatable_bonds_progress.png')
def main(): parser = argparse.ArgumentParser() parser.add_argument( '--mongodb_uri', help='The MongoDB URI for the database to connect to.', default='mongodb://localhost:27017/', ) args = parser.parse_args() logging.basicConfig(level=logging.INFO) # Use a random seed to get reproducible results. random_seed = 4 generator = np.random.RandomState(random_seed) logger.info('Making building blocks.') # Load the building block databases. fluoros = tuple( get_building_blocks( path=pathlib.Path(__file__).parent / 'fluoros.txt', functional_group_factory=stk.FluoroFactory(), )) bromos = tuple( get_building_blocks( path=pathlib.Path(__file__).parent / 'bromos.txt', functional_group_factory=stk.BromoFactory(), )) initial_population = tuple(get_initial_population(fluoros, bromos)) # Write the initial population. for i, record in enumerate(initial_population): write(record.get_molecule(), f'initial_{i}.mol') client = pymongo.MongoClient(args.mongodb_uri) db = stk.ConstructedMoleculeMongoDb(client) ea = stk.EvolutionaryAlgorithm( initial_population=initial_population, fitness_calculator=stk.FitnessFunction(get_fitness_value), mutator=stk.RandomMutator( mutators=( stk.RandomBuildingBlock( building_blocks=fluoros, is_replaceable=is_fluoro, random_seed=generator.randint(0, 1000), ), stk.SimilarBuildingBlock( building_blocks=fluoros, is_replaceable=is_fluoro, random_seed=generator.randint(0, 1000), ), stk.RandomBuildingBlock( building_blocks=bromos, is_replaceable=is_bromo, random_seed=generator.randint(0, 1000), ), stk.SimilarBuildingBlock( building_blocks=bromos, is_replaceable=is_bromo, random_seed=generator.randint(0, 1000), ), ), random_seed=generator.randint(0, 1000), ), crosser=stk.GeneticRecombination(get_gene=get_functional_group_type, ), generation_selector=stk.Best( num_batches=25, duplicate_molecules=False, ), mutation_selector=stk.Roulette( num_batches=5, random_seed=generator.randint(0, 1000), ), crossover_selector=stk.Roulette( num_batches=3, batch_size=2, random_seed=generator.randint(0, 1000), ), ) logger.info('Starting EA.') generations = [] for generation in ea.get_generations(50): for record in generation.get_molecule_records(): db.put(record.get_molecule()) generations.append(generation) # Write the final population. for i, record in enumerate(generation.get_molecule_records()): write(record.get_molecule(), f'final_{i}.mol') logger.info('Making fitness plot.') fitness_progress = stk.ProgressPlotter( generations=generations, get_property=lambda record: record.get_fitness_value(), y_label='Fitness Value', ) fitness_progress.write('fitness_progress.png') logger.info('Making rotatable bonds plot.') rotatable_bonds_progress = stk.ProgressPlotter( generations=generations, get_property=get_num_rotatable_bonds, y_label='Number of Rotatable Bonds', ) rotatable_bonds_progress.write('rotatable_bonds_progress.png')