def test_iter_yield_times(self): """Sampler.__iter__ yields for each interval""" process = Process([stocal.Event([], ['a'], 3., 3.)]) target = [30., 60., 90.] sampler = self.Sampler(process.sample({})) for a,b in zip((result[0] for result in sampler), target): self.assertEqual(a, b)
def test_iter_skipping_behavior(self): """Sampler.__iter__ skips empty iterations if initialized with skip=True""" process = Process([stocal.Event([], ['a'], 0.5, 2.4)]) target = [1., 3., 6., 8., 11.] sampler = self.Sampler(process.sample({}), skip=True) for a,b in zip((result[0] for result in sampler), target): self.assertEqual(a, b)
def test_iter_works_when_chained(self): """test that every and until can be chained""" process = Process([stocal.MassAction(['a'], [], .1)]) sampler = self.Sampler(process.sample({'a': 20})) sampler = sampler.until(time=5) time, trans, state = next(iter(sampler)) self.assertEqual(time, 1.)
def test_iter_empty_filter_list(self): """Sampler.__iter__ advances to simulation end when transitions are empty""" process = Process([stocal.MassAction(['a'], [''], 1.)]) sampler = self.Sampler(process.sample({'a':10}), []) with self.assertRaises(StopIteration): next(iter(sampler)) self.assertEqual(sampler.state['a'], 0)
def test_iter_correct_averages(self): """Sampler.__iter__ calculates correct averages""" process = Process([stocal.Event([], ['a'], 0., 3.)]) target = [5.5, 15.5, 25.5] sampler = self.Sampler(process.sample({})) for a,b in zip((result[1]['a'] for result in sampler), target): self.assertAlmostEqual(a, b)
def test_iter_empty_does_not_proceed(self, steps=10): """Sampler.__iter__ does not increase steps for empty process""" process = Process([]) traj = process.sample({}) sampler = self.Sampler(traj, steps) for _ in sampler: pass self.assertEqual(sampler.step, 0)
def test_iter_number_of_steps(self, steps=10): """Sampler.__iter__ yields exact number of steps""" process = Process([stocal.MassAction([], ['a'], 1.)]) traj = process.sample({}) sampler = self.Sampler(traj, steps) for _ in sampler: pass self.assertEqual(sampler.step, steps)
def test_iter_performs_all_transitions(self, target=100): """Sampler.__iter__ performs all transitions""" process = Process([stocal.MassAction(['a'], [], 1.)]) sampler = self.Sampler(process.sample({'a': target})) total = 0 for time, state, trans in sampler: total += sum(trans.values()) self.assertEqual(total, target)
def test_iter_advances_empty(self, tmax=10.): """Sampler.__iter__ advances to end time for empty processes""" process = Process() traj = process.sample({}) sampler = self.Sampler(traj, tmax) for _ in sampler: pass self.assertEqual(sampler.time, tmax)
def test_iter_correct_transitions(self): """Sampler.__iter__ only yields after declared transitions""" r1 = stocal.MassAction(['a'], ['b'], 1.) r2 = stocal.MassAction(['b'], ['c'], 1.) process = Process([r1, r2]) sampler = self.Sampler(process.sample({'a':50, 'b':50}), [r1]) for result in sampler: self.assertIn(r1, result[2])
def test_iter_advances_short(self, tmax=10.): """Sampler.__iter__ advances to end time for short lasting processes""" process = Process([stocal.Event(['a'], [], 1., 1.)]) traj = process.sample({'a': 3}) sampler = self.Sampler(traj, tmax) for _ in sampler: pass self.assertEqual(sampler.time, tmax)
def test_iter_returns_triple(self): """Sampler.__iter__ returns time, state, dict triple""" process = Process([stocal.Event([], ['a'], 1.)]) sampler = process.sample({}) result = next(iter(sampler)) self.assertEqual(len(result), 3) self.assertIsInstance(result[0], float) self.assertIsInstance(result[1], stocal.multiset) self.assertIsInstance(result[2], dict)
def test_iter_correct_skipped_averages(self): """Sampler.__iter__ calculates correct averages""" process = Process([ stocal.Event([], ['a'], 0., 3.), stocal.Event([], ['a'], 1., 2.)]) target = [1., 2., 4., 5. ,6., 7., 9., 10., 11.] sampler = self.Sampler(process.sample({}), skip=True) for a,b in zip((result[1]['a'] for result in sampler), target): self.assertAlmostEqual(a, b)
def test_iter_includes_all_transitions_at_tmax(self, tmax=1.): """Sampler.__iter__ includes all events that happen at tmax""" process = Process([ stocal.Event([], ['a'], tmax), stocal.Event([], ['b'], 0., tmax), stocal.Event([], ['c'], tmax/2, tmax/2)]) traj = process.sample({}) sampler = self.Sampler(traj, tmax) for _ in sampler: pass self.assertEqual(sampler.step, 5)
def test_time_returns_trajectory_time(self): """Sampler.time returns trajectory time""" process = Process([stocal.Event([], ['a'], 1., 10.)]) sampler = process.sample({}) self.assertIsInstance(sampler.time, float)
def test_state_returns_trajectory_state(self): """Sampler.state returns trajectory state""" process = Process([stocal.Event([], ['a'], 1., 10.)]) state = {} sampler = process.sample(state) self.assertEqual(sampler.state, state)
def test_filter_returns_correct_sampler(self): """Sampler.filter() returns FilteredSampler""" process = Process([stocal.Event([], ['a'], 1., 10.)]) sampler = process.sample({}).filter([stocal.MassAction]) self.assertIsInstance(sampler, stocal.experimental.samplers.FilteredSampler)
def test_average_steps_returns_correct_sampler(self): """Sampler.average(steps) returns AverageStepSampler""" process = Process([stocal.Event([], ['a'], 1., 10.)]) sampler = process.sample({}).average(steps=10) self.assertIsInstance(sampler, stocal.experimental.samplers.AverageStepSampler)
def test_every_time_returns_correct_sampler(self): """Sampler.every(time) returns EveryTimeSampler""" process = Process([stocal.Event([], ['a'], 1., 10.)]) sampler = process.sample({}).every(time=1.) self.assertIsInstance(sampler, stocal.experimental.samplers.EveryTimeSampler)
def test_iter_yields_stop_when_empty(self): """Sampler.__iter__ raises StopIteration for empty process""" process = Process([]) with self.assertRaises(StopIteration): next(iter(process.sample({})))