Exemple #1
0
def run_stock():
    n_epoch = 100
    mean = []
    for x in range(n_epoch):
        env = Env(STOCK.Baidu)
        env.set_count(999)  # from 1000 to 2000
        for i in range(1000):
            action = random.random() * 2 - 1  # [-1, 1]
            env.step(action)

        mean.append(env.asset - 10000)

        # while True:
        #     action = random.random() * 2 - 1  # [-1, 1]
        #     observation_, reward, done = env.step(action)
        #
        #     if done:
        #         mean.append(env.asset - 10000)
        #         break

    print(np.mean(mean), np.var(mean))
    # end of game
    print('game over')
Exemple #2
0
from stock_env_discrete import StockEnv as StockEnvD
from stock_env_discrete import STOCK as STOCKD
from sklearn.externals import joblib
import warnings

if __name__ == '__main__':
    warnings.filterwarnings("ignore")  # ignore warnings

    stockHMM = StockHMM(STOCK.Baidu)
    # load model
    stockHMM.model = joblib.load("BaiDuHMM.pkl")

    print('Continuous: ')
    env = StockEnv(STOCK.Baidu)
    # [1000, 2000)
    env.set_count(999)
    for x in range(1000):
        p_states = stockHMM.predict(x + 1000)
        # order: 2 3 4 1 0
        my_action = p_states[
            2] + p_states[3] * 0.5 - p_states[1] * 0.5 - p_states[0]
        env.step(my_action)

    print(env.asset - 10000)

    print('Discrete: ')
    env = StockEnvD(STOCKD.Baidu)
    # [1000, 2000)
    env.set_count(999)
    for x in range(1000):
        p_states = stockHMM.predict(x + 1000)