def test_liberate(writer_stock): with pytest.raises(PermissionError): StockRoom(enable_write=True) runner = CliRunner() res = runner.invoke(cli.liberate) assert res.exit_code == 0 stock = StockRoom(enable_write=True) stock.close()
def test_init_repo(): runner = CliRunner() with runner.isolated_filesystem(): with pytest.raises(RuntimeError): StockRoom() res = runner.invoke(cli.init, ['--username', 'test', '--email', '*****@*****.**']) assert res.exit_code == 0 StockRoom()
def test_commit(repo_with_aset): runner = CliRunner() stock = StockRoom() stock.tag['key'] = 'value' res = runner.invoke(cli.commit, []) assert 'Error: Require commit message\n' in res.stdout res = runner.invoke(cli.commit, ['-m', 'test commit']) assert res.exit_code == 0 assert 'Commit message:\ntest commit\nCommit Successful. Digest' in res.stdout stock._repo.hangar_repository._env._close_environments()
def test_commit(repo_with_col): runner = CliRunner() stock = StockRoom(enable_write=True) stock.experiment["key"] = "value" stock.close() res = runner.invoke(cli.commit, []) assert "Error: Require commit message\n" in res.stdout res = runner.invoke(cli.commit, ["-m", "test commit"]) assert res.exit_code == 0 assert "Commit message:\ntest commit" in res.stdout assert "Commit Successful. Digest" in res.stdout stock._repo._env._close_environments()
def test_commit(repo_with_col): runner = CliRunner() stock = StockRoom(write=True) stock.experiment['key'] = 'value' stock.close() res = runner.invoke(cli.commit, []) assert 'Error: Require commit message\n' in res.stdout res = runner.invoke(cli.commit, ['-m', 'test commit']) assert res.exit_code == 0 assert 'Commit message:\ntest commit' in res.stdout assert 'Commit Successful. Digest' in res.stdout stock._repo._env._close_environments()
def test_opening_two_instances(self, writer_stock): with pytest.raises(PermissionError): StockRoom(write=True) arr = np.arange(20).reshape(4, 5) oldarr = arr * randint(1, 100) col1 = writer_stock.data['ndcol'] col1[1] = oldarr writer_stock.commit('added data') stock2 = StockRoom() col2 = stock2.data['ndcol'] assert np.allclose(col2[1], oldarr) stock2._repo._env._close_environments()
def test_init_repo(): runner = CliRunner() with runner.isolated_filesystem(): with pytest.raises(RuntimeError): stock = StockRoom() res = runner.invoke(cli.init, ['--name', 'test', '--email', '*****@*****.**']) assert 'Error: stock init should execute only in a git repository' in res.output cwd = Path.cwd() cwd.joinpath('.git').mkdir(exist_ok=True) res = runner.invoke(cli.init, ['--name', 'test', '--email', '*****@*****.**']) assert res.exit_code == 0 stock = StockRoom()
def reader_stock(writer_stock): arr = np.arange(20).reshape(4, 5) col = writer_stock.data["ndcol"] col[1] = arr writer_stock.commit("added first data point") writer_stock.close() stock_obj = StockRoom() yield stock_obj stock_obj._repo._env._close_environments()
def test_import_cifar(repo, torchvision_datasets, dataset, splits, columns): runner = CliRunner() res = runner.invoke(cli.import_data, [f"torchvision.{dataset}"]) assert res.exit_code == 0 keys = [ f"{dataset}-{split}-{column}" for split in splits for column in columns ] stock = StockRoom() assert stock.data.keys() == tuple(keys) assert stock.data[f"{dataset}-train-image"][0].shape == (3, 32, 32) assert stock.data[f"{dataset}-test-label"][0].shape == tuple() assert stock.data[f"{dataset}-train-image"][0].dtype == np.float32
def test_import_mnist(repo, torchvision_datasets, dataset, splits, columns): runner = CliRunner() res = runner.invoke(cli.import_data, [f"torchvision.{dataset}"]) assert res.exit_code == 0 keys = [ f"{dataset}-{split}-{column}" for split in splits for column in columns ] keys = sorted(keys) stock = StockRoom() data_keys = sorted(list(stock.data.keys())) assert data_keys == keys assert stock.data[f"{dataset}-train-image"][0].shape == (28, 28) assert stock.data[f"{dataset}-test-label"][0].shape == tuple() assert stock.data[f"{dataset}-train-image"][0].dtype == np.float32
def test_import_voc(repo, torchvision_datasets, dataset, splits, columns): runner = CliRunner() res = runner.invoke(cli.import_data, [f"torchvision.{dataset}"]) assert res.exit_code == 0 keys = [ f"{dataset}-{split}-{column}" for split in splits for column in columns ] stock = StockRoom() assert sorted(stock.data.keys()) == sorted(keys) assert stock.data[f"{dataset}-train-image"][0].shape == (3, 500, 500) assert stock.data[f"{dataset}-train-image"][0].dtype == np.uint8 assert stock.data[f"{dataset}-val-image"][0].shape == (3, 500, 500) assert stock.data[f"{dataset}-trainval-image"][0].shape == (3, 500, 500) if dataset == "voc_segmentation": assert stock.data[f"{dataset}-train-segment"][0].shape == (500, 500) elif dataset == "voc_detection": assert stock.data[f"{dataset}-train-names"][0][0] == "testname" assert stock.data[f"{dataset}-train-boxes"][0][0].shape == (2, 2)
def writer_stock(repo_with_col): stock_obj = StockRoom(write=True) yield stock_obj stock_obj._repo._env._close_environments()
def stock(repo_with_aset): stock_obj = StockRoom() yield stock_obj stock_obj._repo.hangar_repository._env._close_environments()
self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x stock = StockRoom() imgcol = stock.data['cifar10-train-image'] lblcol = stock.data['cifar10-train-label'] # imshow(imgcol[11]) lr = 0.001 momentum = 0.9 check_every = 500 net = Net() dset = make_torch_dataset([imgcol, lblcol]) dloader = DataLoader(dset, batch_size=64) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum) for epoch in range(2): running_loss = 0.0