ax.scatter([state.state_vector[0, 0] for measurements in measurementss for state in measurements], 
           [state.state_vector[1, 0] for measurements in measurementss for state in measurements], 
           color='b')
fig

from scipy.stats import uniform

from stonesoup.types.detection import Clutter

clutter = []
for n in range(1, 21):
    clutter.append(set())
    for _ in range(np.random.randint(10)):
        x = uniform.rvs(0, 20)
        y = uniform.rvs(0, 20)
        clutter[-1].add(Clutter(
            np.array([[x], [y]]), timestamp=start_time+timedelta(seconds=n)))
# Plot the result
ax.scatter([state.state_vector[0, 0] for clutter_set in clutter for state in clutter_set], 
           [state.state_vector[1, 0] for clutter_set in clutter for state in clutter_set], 
           color='y', marker='2')
fig

# Create Models and Kalman Filter

from scipy.stats import uniform

from stonesoup.types.detection import Clutter

clutter = []
for n in range(1, 21):
    clutter.append(set())
        if np.random.rand() <= probability_detection:
            # Generate actual detection from the state
            measurement = measurement_model.function(truth_state, noise=True)
            measurement_set.add(
                TrueDetection(state_vector=measurement,
                              groundtruth_path=truth,
                              timestamp=truth_state.timestamp,
                              measurement_model=measurement_model))

    # Generate clutter at this time-step
    for _ in range(np.random.poisson(clutter_rate)):
        x = uniform.rvs(-100, 200)
        y = uniform.rvs(-100, 200)
        measurement_set.add(
            Clutter(np.array([[x], [y]]),
                    timestamp=timestamp,
                    measurement_model=measurement_model))

    all_measurements.append(measurement_set)

# Plot true detections and clutter.
plotter.plot_measurements(all_measurements, [0, 2], color='g')
plotter.fig

# %%
# Create the Predicter and Updater
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# The updater is a :class:`~.PHDUpdater`, and since it uses the mixed Gaussian paths, it is a
# GM-PHD updater. For each individual track we use a :class:`~.KalmanUpdater`. Here we assume
# that the measurement range and clutter spatial density are known to the filter. We
        # Generate actual detection from the state with a 10% chance that no detection is received.
        if np.random.rand() <= prob_detect:
            measurement = measurement_model.function(truth[k], noise=True)
            measurement_set.add(
                TrueDetection(state_vector=measurement,
                              groundtruth_path=truth,
                              timestamp=truth[k].timestamp))

        # Generate clutter at this time-step
        truth_x = truth[k].state_vector[0]
        truth_y = truth[k].state_vector[2]
        for _ in range(np.random.randint(10)):
            x = uniform.rvs(truth_x - 10, 20)
            y = uniform.rvs(truth_y - 10, 20)
            measurement_set.add(
                Clutter(np.array([[x], [y]]), timestamp=truth[k].timestamp))
    all_measurements.append(measurement_set)

# Plot measurements.
for set_ in all_measurements:
    # Plot actual detections.
    axm.scatter([
        state.state_vector[0]
        for state in set_ if isinstance(state, TrueDetection)
    ], [
        state.state_vector[1]
        for state in set_ if isinstance(state, TrueDetection)
    ],
                color='g')
    # Plot clutter.
    axm.scatter([
    for truth in truths:
        # Generate actual detection from the state with a 10% chance that no detection is received.
        if np.random.rand() <= prob_detect:
            measurement = measurement_model.function(truth[k], noise=True)
            measurement_set.add(TrueDetection(state_vector=measurement,
                                              groundtruth_path=truth,
                                              timestamp=truth[k].timestamp,
                                              measurement_model=measurement_model))

        # Generate clutter at this time-step
        truth_x = truth[k].state_vector[0]
        truth_y = truth[k].state_vector[2]
        for _ in range(np.random.randint(10)):
            x = uniform.rvs(truth_x - 10, 20)
            y = uniform.rvs(truth_y - 10, 20)
            measurement_set.add(Clutter(np.array([[x], [y]]), timestamp=truth[k].timestamp,
                                        measurement_model=measurement_model))
    all_measurements.append(measurement_set)

# Plot true detections and clutter.
plotter.plot_measurements(all_measurements, [0, 2], color='g')

# %%
from stonesoup.predictor.kalman import KalmanPredictor
predictor = KalmanPredictor(transition_model)

# %%
from stonesoup.updater.kalman import KalmanUpdater
updater = KalmanUpdater(measurement_model)

# %%
# Initial hypotheses are calculated (per track) in the same manner as the PDA.
Exemple #5
0
    # Generate actual detection from the state with a 1-p_d chance that no detection is received.
    if np.random.rand() <= prob_det:
        measurement = measurement_model.function(state, noise=True)
        measurement_set.add(
            TrueDetection(state_vector=measurement,
                          groundtruth_path=truth,
                          timestamp=state.timestamp))

    # Generate clutter at this time-step
    truth_x = state.state_vector[0]
    truth_y = state.state_vector[2]
    for _ in range(np.random.randint(10)):
        x = uniform.rvs(truth_x - 10, 20)
        y = uniform.rvs(truth_y - 10, 20)
        measurement_set.add(
            Clutter(np.array([[x], [y]]), timestamp=state.timestamp))

    all_measurements.append(measurement_set)

# %%
# Plot the ground truth and measurements with clutter.
from matplotlib import pyplot as plt
fig = plt.figure(figsize=(10, 6))
ax = fig.add_subplot(1, 1, 1)
ax.set_xlabel("$x$")
ax.set_ylabel("$y$")
ax.set_ylim(0, 25)
ax.set_xlim(0, 25)

ax.plot(
    [state.state_vector[0] for state in truth],