Exemple #1
0
def analyzeData():
    dirs = sorted(glob.glob("test*"))

    for a_dir in dirs:
        print()
        print("Analyzing:", a_dir)
        print()

        mlist = a_dir + "/test.hdf5"

        # Remove stale results, if any.
        if os.path.exists(mlist):
            os.remove(mlist)

        # Run analysis.
        start_time = time.time()
        scmos.analyze(a_dir + "/test.tif", mlist, "scmos.xml")
        stop_time = time.time()

        # Save timing results.
        print("Analysis completed in {0:.2f} seconds".format(stop_time -
                                                             start_time))

        with open(a_dir + "/timing.txt", "w") as fp:
            fp.write(str(stop_time - start_time) + "\n")
def test_scmos_2d_fixed():

    movie_name = storm_analysis.getData("test/data/test.dax")
    settings = storm_analysis.getData("test/data/test_sc_2d_fixed.xml")
    mlist = storm_analysis.getPathOutputTest("test_sc_2d_fixed.bin")
    storm_analysis.removeFile(mlist)

    from storm_analysis.sCMOS.scmos_analysis import analyze

    analyze(movie_name, mlist, settings)
def test_scmos_Z():

    movie_name = storm_analysis.getData("test/data/test.dax")
    settings = storm_analysis.getData("test/data/test_sc_Z.xml")
    mlist = storm_analysis.getPathOutputTest("test_sc_Z.hdf5")
    storm_analysis.removeFile(mlist)
    
    from storm_analysis.sCMOS.scmos_analysis import analyze
    analyze(movie_name, mlist, settings)

    # Verify number of localizations found.
    num_locs = veri.verifyNumberLocalizations(mlist)
    if not veri.verifyIsCloseEnough(num_locs, 1942):
        raise Exception("sCMOS Z did not find the expected number of localizations.")
Exemple #4
0
def test_scmos_Z():

    movie_name = storm_analysis.getData("test/data/test.dax")
    settings = storm_analysis.getData("test/data/test_sc_Z.xml")
    mlist = storm_analysis.getPathOutputTest("test_sc_Z.bin")
    storm_analysis.removeFile(mlist)

    from storm_analysis.sCMOS.scmos_analysis import analyze
    analyze(movie_name, mlist, settings)

    # Verify number of localizations found.
    num_locs = veri.verifyNumberLocalizations(mlist)
    if not veri.verifyIsCloseEnough(num_locs, 1958):
        raise Exception(
            "sCMOS Z did not find the expected number of localizations.")
def test_scmos_3d():

    movie_name = storm_analysis.getData("test/data/test.dax")
    settings = storm_analysis.getData("test/data/test_sc_3d.xml")
    mlist = storm_analysis.getPathOutputTest("test_sc_3d.hdf5")
    storm_analysis.removeFile(mlist)
    
    from storm_analysis.sCMOS.scmos_analysis import analyze
    analyze(movie_name, mlist, settings)

    # Verify number of localizations found.
    num_locs = veri.verifyNumberLocalizations(mlist)
    if not veri.verifyIsCloseEnough(num_locs, 1950):
        raise Exception("sCMOS 3D did not find the expected number of localizations.")

    # Verify that the Z values actually got calculated.
    if not veri.verifyZWasCalculated(mlist):
        raise Exception("Z values were not calculated for sCMOS 3D fitting.")
def test_scmos_3d():

    movie_name = storm_analysis.getData("test/data/test.dax")
    settings = storm_analysis.getData("test/data/test_sc_3d.xml")
    mlist = storm_analysis.getPathOutputTest("test_sc_3d.hdf5")
    storm_analysis.removeFile(mlist)

    from storm_analysis.sCMOS.scmos_analysis import analyze
    analyze(movie_name, mlist, settings)

    # Verify number of localizations found.
    num_locs = veri.verifyNumberLocalizations(mlist)
    if not veri.verifyIsCloseEnough(num_locs, 1950):
        raise Exception(
            "sCMOS 3D did not find the expected number of localizations.")

    # Verify that the Z values actually got calculated.
    if not veri.verifyZWasCalculated(mlist):
        raise Exception("Z values were not calculated for sCMOS 3D fitting.")
def analyzeData():
    dirs = sorted(glob.glob("test*"))

    for a_dir in dirs:
        print()
        print("Analyzing:", a_dir)
        print()
    
        mlist = a_dir + "/test.hdf5"

        # Remove stale results, if any.
        if os.path.exists(mlist):
            os.remove(mlist)

        # Run analysis.
        start_time = time.time()
        scmos.analyze(a_dir + "/test.tif", mlist, "scmos.xml")
        stop_time = time.time()

        # Save timing results.
        print("Analysis completed in {0:.2f} seconds".format(stop_time - start_time))

        with open(a_dir + "/timing.txt", "w") as fp:
            fp.write(str(stop_time - start_time) + "\n")
Exemple #8
0
def configure():
    # Get relevant paths.
    mm_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/micrometry/"
    mp_path = os.path.dirname(
        inspect.getfile(storm_analysis)) + "/multi_plane/"
    sp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"

    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")

    # Useful variables
    aoi_size = int(settings.psf_size / 2) + 1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [
            numpy.zeros(
                (settings.y_size, settings.x_size)) + settings.camera_offset,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain, 1
        ])

        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        sim_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call([
            "python", sim_path + "emitters_on_grid.py", "--bin",
            "grid_list.hdf5", "--nx",
            str(settings.nx), "--ny",
            str(settings.ny), "--spacing", "20", "--zrange",
            str(settings.test_z_range), "--zoffset",
            str(settings.test_z_offset)
        ])

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        subprocess.call([
            "python", sim_path + "emitters_uniform_random.py", "--bin",
            "random_storm.hdf5", "--density", "1.0", "--margin",
            str(settings.margin), "--sx",
            str(settings.x_size), "--sy",
            str(settings.y_size), "--zrange",
            str(settings.test_z_range)
        ])

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        subprocess.call([
            "python", sim_path + "emitters_uniform_random.py", "--bin",
            "random_map.hdf5", "--density", "0.0003", "--margin",
            str(settings.margin), "--sx",
            str(settings.x_size), "--sy",
            str(settings.y_size)
        ])

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        sim_path = os.path.dirname(
            inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call([
            "python", sim_path + "emitters_on_grid.py", "--bin",
            "psf_list.hdf5", "--nx", "6", "--ny", "3", "--spacing", "40"
        ])

    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make simulated mapping data.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, settings.
                                                    pixel_size)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i + 1) + "_map.dax",
                         "c" + str(i + 1) + "_random_map.hdf5", 1)

        # Analyze simulated mapping data
        #
        for i in range(4):
            scmos.analyze("c" + str(i + 1) + "_map.dax",
                          "c" + str(i + 1) + "_map.hdf5", "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            subprocess.call([
                "python", mm_path + "micrometry.py", "--locs1", "c1_map.hdf5",
                "--locs2", "c" + str(i + 2) + "_map.hdf5", "--results",
                "c1_c" + str(i + 2) + "_map.map", "--no_plots"
            ])

        # Merge mapping.
        #
        subprocess.call([
            "python", mm_path + "merge_maps.py", "--results", "map.map",
            "--maps", "c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"
        ])

        # Print mapping.
        #
        if True:
            print("Mapping is:")
            subprocess.call([
                "python", mp_path + "print_mapping.py", "--mapping", "map.map"
            ])
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_x"],
                                  numpy.array(
                                      [settings.dx * (i + 1), 1.0, 0.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("X mapping difference for channel", i + 1)
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_y"],
                                  numpy.array(
                                      [settings.dy * (i + 1), 0.0, 1.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("Y mapping difference for channel", i + 1)

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05,
                          0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, settings.
                                                      pixel_size, [])

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i + 1) + "_zcal.dax",
                             "c" + str(i + 1) + "_random_map.hdf5", dz.size)

        # Get localizations to use for PSF measurement.
        #
        subprocess.call([
            "python", mp_path + "psf_localizations.py", "--bin",
            "c1_map_ref.hdf5", "--map", "map.map", "--aoi_size",
            str(aoi_size)
        ])

        # Create PSF z stacks.
        #
        for i in range(4):
            subprocess.call([
                "python", mp_path + "psf_zstack.py", "--movie",
                "c" + str(i + 1) + "_zcal.dax", "--bin",
                "c1_map_ref_c" + str(i + 1) + "_psf.hdf5", "--zstack",
                "c" + str(i + 1) + "_zstack", "--scmos_cal", "calib.npy",
                "--aoi_size",
                str(aoi_size)
            ])

        # Measure PSF.
        #
        for i in range(4):
            subprocess.call([
                "python", mp_path + "measure_psf.py", "--zstack",
                "c" + str(i + 1) + "_zstack.npy", "--zoffsets", "z_offset.txt",
                "--psf_name", "c" + str(i + 1) + "_psf_normed.psf",
                "--z_range",
                str(settings.psf_z_range), "--normalize"
            ])

    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            subprocess.call([
                "python", sp_path + "psf_to_spline.py", "--psf",
                "c" + str(i + 1) + "_psf_normed.psf", "--spline",
                "c" + str(i + 1) + "_psf.spline", "--spline_size",
                str(settings.psf_size)
            ])

    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        subprocess.call([
            "python", mp_path + "plane_weighting.py", "--background",
            str(settings.photons[0][0]), "--photons",
            str(settings.photons[0][1]), "--output", "weights.npy", "--xml",
            "multicolor.xml", "--no_plots"
        ])
def configure():
    # Get relevant paths.
    mm_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/micrometry/"
    mp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/multi_plane/"
    sp_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/spliner/"

    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")
    
    # Useful variables
    aoi_size = int(settings.psf_size/2)+1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [numpy.zeros((settings.y_size, settings.x_size)) + settings.camera_offset,
                                 numpy.ones((settings.y_size, settings.x_size)) * settings.camera_variance,
                                 numpy.ones((settings.y_size, settings.x_size)) * settings.camera_gain,
                                 numpy.ones((settings.y_size, settings.x_size)),
                                 2])
    
        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call(["python", sim_path + "emitters_on_grid.py",
                         "--bin", "grid_list.hdf5",
                         "--nx", str(settings.nx),
                         "--ny", str(settings.ny),
                         "--spacing", "20",
                         "--zrange", str(settings.test_z_range),
                         "--zoffset", str(settings.test_z_offset)])

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                         "--bin", "random_storm.hdf5",
                         "--density", "1.0",
                         "--margin", str(settings.margin),
                         "--sx", str(settings.x_size),
                         "--sy", str(settings.y_size),
                         "--zrange", str(settings.test_z_range)])

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        subprocess.call(["python", sim_path + "emitters_uniform_random.py",
                         "--bin", "random_map.hdf5",
                         "--density", "0.0003",
                         "--margin", str(settings.margin),
                         "--sx", str(settings.x_size),
                         "--sy", str(settings.y_size)])

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        sim_path = os.path.dirname(inspect.getfile(storm_analysis)) + "/simulator/"
        subprocess.call(["python", sim_path + "emitters_on_grid.py",
                         "--bin", "psf_list.hdf5",
                         "--nx", "6",
                         "--ny", "3",
                         "--spacing", "40"])


    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")
    
        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1,4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i+1) + "_random_map.hdf5", locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1,4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i+1) + "_random_map.hdf5", locs)
        
        # Make simulated mapping data.
        # 
        bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
        cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3 : psf.GaussianPSF(s, x, y, i3, settings.pixel_size)

        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i+1) + "_map.dax", "c" + str(i+1) + "_random_map.hdf5", 1)
    
        # Analyze simulated mapping data
        #
        for i in range(4):
            scmos.analyze("c" + str(i+1) + "_map.dax", "c" + str(i+1) + "_map.hdf5", "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            subprocess.call(["python", mm_path + "micrometry.py",
                             "--locs1", "c1_map.hdf5",
                             "--locs2", "c" + str(i+2) + "_map.hdf5",
                             "--results", "c1_c" + str(i+2) + "_map.map",
                             "--no_plots"])

        # Merge mapping.
        #
        subprocess.call(["python", mm_path + "merge_maps.py",
                         "--results", "map.map",
                         "--maps", "c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"])
        
        # Print mapping.
        #
        if True:
            print("Mapping is:")
            subprocess.call(["python", mp_path + "print_mapping.py",
                             "--mapping", "map.map"])
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i+1) + "_x"], numpy.array([settings.dx*(i+1), 1.0, 0.0]), rtol = 0.05, atol = 0.05):
                print("X mapping difference for channel", i+1)
            if not numpy.allclose(mappings["0_" + str(i+1) + "_y"], numpy.array([settings.dy*(i+1), 0.0, 1.0]), rtol = 0.05, atol = 0.05):
                print("Y mapping difference for channel", i+1)
    

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05, 0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:,2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:,1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5 : background.UniformBackground(s, x, y, h5, photons = 10)
        cam_f = lambda s, x, y, h5 : camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5 : drift.DriftFromFile(s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5 : photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5 : psf.PupilFunction(s, x, y, h5, settings.pixel_size, [])

        sim = simulate.Simulate(background_factory = bg_f,
                                camera_factory = cam_f,
                                drift_factory = drift_f,
                                photophysics_factory = pp_f,
                                psf_factory = psf_f,
                                x_size = settings.x_size,
                                y_size = settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i+1) + "_zcal.dax",
                             "c" + str(i+1) + "_random_map.hdf5",
                             dz.size)
        
        # Get localizations to use for PSF measurement.
        #
        subprocess.call(["python", mp_path + "psf_localizations.py",
                         "--bin", "c1_map_ref.hdf5",
                         "--map", "map.map",
                         "--aoi_size", str(aoi_size)])
    
        # Create PSF z stacks.
        #
        for i in range(4):
            subprocess.call(["python", mp_path + "psf_zstack.py",
                             "--movie", "c" + str(i+1) + "_zcal.dax",
                             "--bin", "c1_map_ref_c" + str(i+1) + "_psf.hdf5",
                             "--zstack", "c" + str(i+1) + "_zstack",
                             "--scmos_cal", "calib.npy",
                             "--aoi_size", str(aoi_size)])

        # Measure PSF.
        #
        for i in range(4):
            subprocess.call(["python", mp_path + "measure_psf.py",
                             "--zstack", "c" + str(i+1) + "_zstack.npy",
                             "--zoffsets", "z_offset.txt",
                             "--psf_name", "c" + str(i+1) + "_psf_normed.psf",
                             "--z_range", str(settings.psf_z_range),
                             "--normalize"])


    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            subprocess.call(["python", sp_path + "psf_to_spline.py",
                             "--psf", "c" + str(i+1) + "_psf_normed.psf",
                             "--spline", "c" + str(i+1) + "_psf.spline",
                             "--spline_size", str(int(settings.psf_size/2))])
        
            
    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        subprocess.call(["python", mp_path + "plane_weighting.py",
                         "--background", str(settings.photons[0][0]),
                         "--photons", str(settings.photons[0][1]),
                         "--output", "weights.npy",
                         "--xml", "multicolor.xml",
                         "--no_plots"])
Exemple #10
0
def configure():
    # Create analysis XML files.
    #
    print("Creating XML files.")
    params = testingParametersSCMOS()
    params.toXMLFile("scmos.xml")

    params = testingParametersMC()
    params.toXMLFile("multicolor.xml")

    # Useful variables
    aoi_size = int(settings.psf_size / 2) + 1

    # Create sCMOS data and HDF5 files we'll need for the simulation.
    #
    if True:

        # Create sCMOS camera calibration files.
        #
        numpy.save("calib.npy", [
            numpy.zeros(
                (settings.y_size, settings.x_size)) + settings.camera_offset,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_variance,
            numpy.ones(
                (settings.y_size, settings.x_size)) * settings.camera_gain,
            numpy.ones((settings.y_size, settings.x_size)), 2
        ])

        # Create localization on a grid file.
        #
        print("Creating gridded localizations.")
        emittersOnGrid.emittersOnGrid("grid_list.hdf5", settings.nx,
                                      settings.ny, 1.5, 20,
                                      settings.test_z_range,
                                      settings.test_z_offset)

        # Create randomly located localizations file (for STORM movies).
        #
        print("Creating random localizations.")
        emittersUniformRandom.emittersUniformRandom("random_storm.hdf5", 1.0,
                                                    settings.margin,
                                                    settings.x_size,
                                                    settings.y_size,
                                                    settings.test_z_range)

        # Create randomly located localizations file (for mapping measurement).
        #
        print("Creating random localizations.")
        emittersUniformRandom.emittersUniformRandom("random_map.hdf5", 0.0003,
                                                    settings.margin,
                                                    settings.x_size,
                                                    settings.y_size,
                                                    settings.test_z_range)

        # Create sparser grid for PSF measurement.
        #
        print("Creating data for PSF measurement.")
        emittersOnGrid.emittersOnGrid("psf_list.hdf5", 6, 3, 1.5, 40, 0.0, 0.0)

    ## This part makes / tests measuring the mapping.
    ##
    if True:
        print("Measuring mapping.")

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make localization files for simulations.
        #
        locs = saH5Py.loadLocalizations("random_map.hdf5")
        locs["z"][:] = 1.0e-3 * settings.z_planes[0]
        saH5Py.saveLocalizations("c1_random_map.hdf5", locs)
        for i in range(1, 4):
            locs["x"] += settings.dx
            locs["y"] += settings.dy
            locs["z"][:] = settings.z_planes[i]
            saH5Py.saveLocalizations("c" + str(i + 1) + "_random_map.hdf5",
                                     locs)

        # Make simulated mapping data.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, i3: psf.GaussianPSF(s, x, y, i3, settings.
                                                    pixel_size)

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        for i in range(4):
            sim.simulate("c" + str(i + 1) + "_map.dax",
                         "c" + str(i + 1) + "_random_map.hdf5", 1)

        # Analyze simulated mapping data
        #
        for i in range(4):
            h5_name = "c" + str(i + 1) + "_map.hdf5"
            if os.path.exists(h5_name):
                os.remove(h5_name)
            scmos.analyze("c" + str(i + 1) + "_map.dax", h5_name, "scmos.xml")

        # Measure mapping.
        #
        for i in range(3):
            micrometry.runMicrometry("c1_map.hdf5",
                                     "c" + str(i + 2) + "_map.hdf5",
                                     "c1_c" + str(i + 2) + "_map.map",
                                     min_size=5.0,
                                     max_size=100.0,
                                     max_neighbors=20,
                                     tolerance=1.0e-2,
                                     no_plots=True)

        # Merge mapping and save results.
        #
        merged_map = mergeMaps.mergeMaps(
            ["c1_c2_map.map", "c1_c3_map.map", "c1_c4_map.map"])

        with open("map.map", 'wb') as fp:
            pickle.dump(merged_map, fp)

        # Print mapping.
        #
        if True:
            print("Mapping is:")
            printMapping.printMapping("map.map")
            print("")

        # Check that mapping is close to what we expect (within 5%).
        #
        with open("map.map", 'rb') as fp:
            mappings = pickle.load(fp)

        for i in range(3):
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_x"],
                                  numpy.array(
                                      [settings.dx * (i + 1), 1.0, 0.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("X mapping difference for channel", i + 1)
            if not numpy.allclose(mappings["0_" + str(i + 1) + "_y"],
                                  numpy.array(
                                      [settings.dy * (i + 1), 0.0, 1.0]),
                                  rtol=0.05,
                                  atol=0.05):
                print("Y mapping difference for channel", i + 1)

    ## This part measures / test the PSF measurement.
    ##
    if True:

        # Create drift file, this is used to displace the localizations in the
        # PSF measurement movie.
        #
        dz = numpy.arange(-settings.psf_z_range, settings.psf_z_range + 0.05,
                          0.01)
        drift_data = numpy.zeros((dz.size, 3))
        drift_data[:, 2] = dz
        numpy.savetxt("drift.txt", drift_data)

        # Also create the z-offset file.
        #
        z_offset = numpy.ones((dz.size, 2))
        z_offset[:, 1] = dz
        numpy.savetxt("z_offset.txt", z_offset)

        # Create simulated data for PSF measurements.
        #
        bg_f = lambda s, x, y, h5: background.UniformBackground(
            s, x, y, h5, photons=10)
        cam_f = lambda s, x, y, h5: camera.SCMOS(s, x, y, h5, "calib.npy")
        drift_f = lambda s, x, y, h5: drift.DriftFromFile(
            s, x, y, h5, "drift.txt")
        pp_f = lambda s, x, y, h5: photophysics.AlwaysOn(s, x, y, h5, 20000.0)
        psf_f = lambda s, x, y, h5: psf.PupilFunction(s, x, y, h5, settings.
                                                      pixel_size, [])

        sim = simulate.Simulate(background_factory=bg_f,
                                camera_factory=cam_f,
                                drift_factory=drift_f,
                                photophysics_factory=pp_f,
                                psf_factory=psf_f,
                                x_size=settings.x_size,
                                y_size=settings.y_size)

        if True:
            for i in range(4):
                sim.simulate("c" + str(i + 1) + "_zcal.dax",
                             "c" + str(i + 1) + "_random_map.hdf5", dz.size)

        # Get localizations to use for PSF measurement.
        #
        psfLocalizations.psfLocalizations("c1_map_ref.hdf5",
                                          "map.map",
                                          aoi_size=aoi_size)

        # Create PSF z stacks.
        #
        for i in range(4):
            psfZStack.psfZStack("c" + str(i + 1) + "_zcal.dax",
                                "c1_map_ref_c" + str(i + 1) + "_psf.hdf5",
                                "c" + str(i + 1) + "_zstack",
                                aoi_size=aoi_size)

        # Measure PSF.
        #
        for i in range(4):
            mpMeasurePSF.measurePSF("c" + str(i + 1) + "_zstack.npy",
                                    "z_offset.txt",
                                    "c" + str(i + 1) + "_psf_normed.psf",
                                    z_range=settings.psf_z_range,
                                    normalize=True)

    ## This part creates the splines.
    ##
    if True:
        print("Measuring Splines.")
        for i in range(4):
            psfToSpline.psfToSpline("c" + str(i + 1) + "_psf_normed.psf",
                                    "c" + str(i + 1) + "_psf.spline",
                                    int(settings.psf_size / 2))

    ## This part measures the Cramer-Rao weights.
    ##
    if True:
        print("Calculating weights.")
        planeWeighting.runPlaneWeighting("multicolor.xml",
                                         "weights.npy",
                                         [settings.photons[0][0]],
                                         settings.photons[0][1],
                                         no_plots=True)