Exemple #1
0
def convertToMultiFit(i3data, x_size, y_size, frame, nm_per_pixel, inverted=False):
    """
    Create a 3D-DAOSTORM, sCMOS or Spliner analysis compatible peak array from I3 data.

    Notes:
      (1) This uses the non-drift corrected positions.
      (2) This sets the initial fitting error to zero and the status to RUNNING.
    """
    i3data = maskData(i3data, (i3data['fr'] == frame))

    peaks = numpy.zeros((i3data.size, utilC.getNPeakPar()))
    
    peaks[:,utilC.getBackgroundIndex()] = i3data['bg']
    peaks[:,utilC.getHeightIndex()] = i3data['h']
    peaks[:,utilC.getZCenterIndex()] = i3data['z'] * 0.001

    if inverted:
        peaks[:,utilC.getXCenterIndex()] = y_size - i3data['x']
        peaks[:,utilC.getYCenterIndex()] = x_size - i3data['y']
        ax = i3data['ax']
        ww = i3data['w']
        peaks[:,utilC.getYWidthIndex()] = 0.5*numpy.sqrt(ww*ww/ax)/nm_per_pixel
        peaks[:,utilC.getXWidthIndex()] = 0.5*numpy.sqrt(ww*ww*ax)/nm_per_pixel
    else:
        peaks[:,utilC.getYCenterIndex()] = i3data['x'] - 1
        peaks[:,utilC.getXCenterIndex()] = i3data['y'] - 1
        ax = i3data['ax']
        ww = i3data['w']
        peaks[:,utilC.getXWidthIndex()] = 0.5*numpy.sqrt(ww*ww/ax)/nm_per_pixel
        peaks[:,utilC.getYWidthIndex()] = 0.5*numpy.sqrt(ww*ww*ax)/nm_per_pixel

    return peaks
Exemple #2
0
def createFromMultiFit(molecules,
                       x_size,
                       y_size,
                       frame,
                       nm_per_pixel,
                       inverted=False):
    """
    Create an I3 data from the output of 3D-DAOSTORM, sCMOS or Spliner.
    """
    n_molecules = molecules.shape[0]

    h = molecules[:, 0]
    if inverted:
        xc = y_size - molecules[:, utilC.getXCenterIndex()]
        yc = x_size - molecules[:, utilC.getYCenterIndex()]
        wx = 2.0 * molecules[:, utilC.getXWidthIndex()] * nm_per_pixel
        wy = 2.0 * molecules[:, utilC.getYWidthIndex()] * nm_per_pixel
    else:
        xc = molecules[:, utilC.getYCenterIndex()] + 1
        yc = molecules[:, utilC.getXCenterIndex()] + 1
        wx = 2.0 * molecules[:, utilC.getYWidthIndex()] * nm_per_pixel
        wy = 2.0 * molecules[:, utilC.getXWidthIndex()] * nm_per_pixel

    bg = molecules[:, utilC.getBackgroundIndex()]
    zc = molecules[:, utilC.getZCenterIndex(
    )] * 1000.0  # fitting is done in um, insight works in nm
    st = numpy.round(molecules[:, utilC.getStatusIndex()])
    err = molecules[:, utilC.getErrorIndex()]

    #
    # Calculate peak area, which is saved in the "a" field.
    #
    # Note that this is assuming that the peak is a 2D gaussian. This
    # will not calculate the correct area for a Spline..
    #
    parea = 2.0 * 3.14159 * h * molecules[:, utilC.getXWidthIndex(
    )] * molecules[:, utilC.getYWidthIndex()]

    ax = wy / wx
    ww = numpy.sqrt(wx * wy)

    i3data = createDefaultI3Data(xc.size)
    posSet(i3data, 'x', xc)
    posSet(i3data, 'y', yc)
    posSet(i3data, 'z', zc)
    setI3Field(i3data, 'h', h)
    setI3Field(i3data, 'bg', bg)
    setI3Field(i3data, 'fi', st)
    setI3Field(i3data, 'a', parea)
    setI3Field(i3data, 'w', ww)
    setI3Field(i3data, 'ax', ax)
    setI3Field(i3data, 'fr', frame)
    setI3Field(i3data, 'i', err)

    return i3data
Exemple #3
0
def createFromMultiFit(molecules, x_size, y_size, frame, nm_per_pixel, inverted=False):
    """
    Create an I3 data from the output of 3D-DAOSTORM, sCMOS or Spliner.
    """
    n_molecules = molecules.shape[0]
        
    h = molecules[:,0]
    if inverted:
        xc = y_size - molecules[:,utilC.getXCenterIndex()]
        yc = x_size - molecules[:,utilC.getYCenterIndex()]
        wx = 2.0*molecules[:,utilC.getXWidthIndex()]*nm_per_pixel
        wy = 2.0*molecules[:,utilC.getYWidthIndex()]*nm_per_pixel
    else:
        xc = molecules[:,utilC.getYCenterIndex()] + 1
        yc = molecules[:,utilC.getXCenterIndex()] + 1
        wx = 2.0*molecules[:,utilC.getYWidthIndex()]*nm_per_pixel
        wy = 2.0*molecules[:,utilC.getXWidthIndex()]*nm_per_pixel

    bg = molecules[:,utilC.getBackgroundIndex()]
    zc = molecules[:,utilC.getZCenterIndex()] * 1000.0  # fitting is done in um, insight works in nm
    st = numpy.round(molecules[:,utilC.getStatusIndex()])
    err = molecules[:,utilC.getErrorIndex()]

    #
    # Calculate peak area, which is saved in the "a" field.
    #
    # Note that this is assuming that the peak is a 2D gaussian. This
    # will not calculate the correct area for a Spline..
    #
    parea = 2.0*3.14159*h*molecules[:,utilC.getXWidthIndex()]*molecules[:,utilC.getYWidthIndex()]

    ax = wy/wx
    ww = numpy.sqrt(wx*wy)
        
    i3data = createDefaultI3Data(xc.size)
    posSet(i3data, 'x', xc)
    posSet(i3data, 'y', yc)
    posSet(i3data, 'z', zc)
    setI3Field(i3data, 'h', h)
    setI3Field(i3data, 'bg', bg)
    setI3Field(i3data, 'fi', st)
    setI3Field(i3data, 'a', parea)
    setI3Field(i3data, 'w', ww)
    setI3Field(i3data, 'ax', ax)
    setI3Field(i3data, 'fr', frame)
    setI3Field(i3data, 'i', err)

    return i3data
    def __init__(self, parameters):
        fitting.PeakFinder.__init__(self, parameters)
        self.height_rescale = []
        self.mfilter = []
        self.mfilter_z = []
        self.z_value = []

        # Load the spline.
        self.s_to_psf = splineToPSF.loadSpline(parameters.getAttr("spline"))

        # Update margin based on the spline size.
        old_margin = self.margin
        self.margin = int((self.s_to_psf.getSize() + 1)/4 + 2)

        self.mfilter_z = parameters.getAttr("z_value", [0.0])
        for zval in self.mfilter_z:
            self.z_value.append(self.s_to_psf.getScaledZ(zval))

        if parameters.hasAttr("peak_locations"):

            # Correct for any difference in the margins.
            self.peak_locations[:,utilC.getXCenterIndex()] += self.margin - old_margin
            self.peak_locations[:,utilC.getYCenterIndex()] += self.margin - old_margin

            # Provide the "correct" starting z value.
            self.peak_locations[:,utilC.getZCenterIndex()] = self.z_value[0]
Exemple #5
0
    def __init__(self, parameters):
        fitting.PeakFinder.__init__(self, parameters)
        self.height_rescale = []
        self.mfilter = []
        self.mfilter_z = []
        self.z_value = []

        # Load the spline.
        self.s_to_psf = splineToPSF.loadSpline(parameters.getAttr("spline"))

        # Update margin based on the spline size.
        old_margin = self.margin
        self.margin = int((self.s_to_psf.getSize() + 1)/4 + 2)

        self.mfilter_z = parameters.getAttr("z_value", [0.0])
        for zval in self.mfilter_z:
            self.z_value.append(self.s_to_psf.getScaledZ(zval))

        if parameters.hasAttr("peak_locations"):

            # Correct for any difference in the margins.
            self.peak_locations[:,utilC.getXCenterIndex()] += self.margin - old_margin
            self.peak_locations[:,utilC.getYCenterIndex()] += self.margin - old_margin

            # Provide the "correct" starting z value.
            self.peak_locations[:,utilC.getZCenterIndex()] = self.z_value[0]
Exemple #6
0
    def analyzeImage(self,
                     new_image,
                     bg_estimate=None,
                     save_residual=False,
                     verbose=False):
        """
        image - The image to analyze.
        bg_estimate - (Optional) An estimate of the background.
        save_residual - (Optional) Save the residual image after peak fitting, default is False.

        return - [Found peaks, Image residual]
        """

        #
        # Pad out arrays so that we can better analyze localizations
        # near the edge of the original image.
        #
        image = padArray(new_image, self.margin)
        residual = padArray(new_image, self.margin)
        if bg_estimate is not None:
            bg_estimate = padArray(bg_estimate, self.margin)

        self.peak_finder.newImage(image)
        self.peak_fitter.newImage(image)

        if save_residual:
            resid_dax = daxwriter.DaxWriter("residual.dax", residual.shape[0],
                                            residual.shape[1])

        peaks = False
        for i in range(self.peak_finder.iterations):
            if save_residual:
                resid_dax.addFrame(residual)

            no_bg_image = self.peak_finder.subtractBackground(
                residual, bg_estimate)
            [found_new_peaks,
             peaks] = self.peak_finder.findPeaks(no_bg_image, peaks)
            if isinstance(peaks, numpy.ndarray):
                [peaks, residual] = self.peak_fitter.fitPeaks(peaks)

            if verbose:
                if isinstance(peaks, numpy.ndarray):
                    print(" peaks:", i, found_new_peaks, peaks.shape[0])
                else:
                    print(" peaks:", i, found_new_peaks, "NA")

            if not found_new_peaks:
                break

        if save_residual:
            resid_dax.addFrame(residual)
            resid_dax.close()

        if isinstance(peaks, numpy.ndarray):
            peaks[:, utilC.getXCenterIndex()] -= float(self.margin)
            peaks[:, utilC.getYCenterIndex()] -= float(self.margin)

        return [peaks, residual]
Exemple #7
0
    def __init__(self, parameters):

        # Initialized from parameters.
        self.find_max_radius = parameters.getAttr("find_max_radius", 5)     # Radius (in pixels) over which the maxima is maximal.
        self.iterations = parameters.getAttr("iterations")                  # Maximum number of cycles of peak finding, fitting and subtraction to perform.
        self.sigma = parameters.getAttr("sigma")                            # Peak sigma (in pixels).
        self.threshold = parameters.getAttr("threshold")                    # Peak minimum threshold (height, in camera units).
        self.z_value = parameters.getAttr("z_value", 0.0)                   # The starting z value to use for peak fitting.

        # Other member variables.
        self.background = None                                              # Current estimate of the image background.
        self.image = None                                                   # The original image.
        self.margin = PeakFinderFitter.margin                               # Size of the unanalyzed "edge" around the image.
        self.neighborhood = PeakFinder.unconverged_dist * self.sigma        # Radius for marking neighbors as unconverged.
        self.new_peak_radius = PeakFinder.new_peak_dist                     # Minimum allowed distance between new peaks and current peaks.
        self.parameters = parameters                                        # Keep access to the parameters object.
        self.peak_locations = None                                          # Initial peak locations, as explained below.
        self.peak_mask = None                                               # Mask for limiting peak identification to a particular AOI.
        self.taken = None                                                   # Spots in the image where a peak has already been added.

        
        #
        # This is for is you already know where your want fitting to happen, as
        # for example in a bead calibration movie and you just want to use the
        # approximate locations as inputs for fitting.
        #
        # peak_locations is a text file with the peak x, y, height and background
        # values as white spaced columns (x and y positions are in pixels as
        # determined using visualizer).
        #
        # 1.0 2.0 1000.0 100.0
        # 10.0 5.0 2000.0 200.0
        # ...
        #
        if parameters.hasAttr("peak_locations"):
            print("Using peak starting locations specified in", parameters.getAttr("peak_locations"))

            # Only do one cycle of peak finding as we'll always return the same locations.
            if (self.iterations != 1):
                print("WARNING: setting number of iterations to 1!")
                self.iterations = 1

            # Load peak x,y locations.
            peak_locs = numpy.loadtxt(parameters.getAttr("peak_locations"), ndmin = 2)
            print(peak_locs.shape)

            # Create peak array.
            self.peak_locations = numpy.zeros((peak_locs.shape[0],
                                               utilC.getNPeakPar()))
            self.peak_locations[:,utilC.getXCenterIndex()] = peak_locs[:,1] + self.margin
            self.peak_locations[:,utilC.getYCenterIndex()] = peak_locs[:,0] + self.margin
            self.peak_locations[:,utilC.getHeightIndex()] = peak_locs[:,2]
            self.peak_locations[:,utilC.getBackgroundIndex()] = peak_locs[:,3]

            self.peak_locations[:,utilC.getXWidthIndex()] = numpy.ones(peak_locs.shape[0]) * self.sigma
            self.peak_locations[:,utilC.getYWidthIndex()] = numpy.ones(peak_locs.shape[0]) * self.sigma
Exemple #8
0
def convertToMultiFit(i3data,
                      x_size,
                      y_size,
                      frame,
                      nm_per_pixel,
                      inverted=False):
    """
    Create a 3D-DAOSTORM, sCMOS or Spliner analysis compatible peak array from I3 data.

    Notes:
      (1) This uses the non-drift corrected positions.
      (2) This sets the initial fitting error to zero and the status to RUNNING.
    """
    i3data = maskData(i3data, (i3data['fr'] == frame))

    peaks = numpy.zeros((i3data.size, utilC.getNPeakPar()))

    peaks[:, utilC.getBackgroundIndex()] = i3data['bg']
    peaks[:, utilC.getHeightIndex()] = i3data['h']
    peaks[:, utilC.getZCenterIndex()] = i3data['z'] * 0.001

    if inverted:
        peaks[:, utilC.getXCenterIndex()] = y_size - i3data['x']
        peaks[:, utilC.getYCenterIndex()] = x_size - i3data['y']
        ax = i3data['ax']
        ww = i3data['w']
        peaks[:, utilC.getYWidthIndex()] = 0.5 * numpy.sqrt(
            ww * ww / ax) / nm_per_pixel
        peaks[:, utilC.getXWidthIndex()] = 0.5 * numpy.sqrt(
            ww * ww * ax) / nm_per_pixel
    else:
        peaks[:, utilC.getYCenterIndex()] = i3data['x'] - 1
        peaks[:, utilC.getXCenterIndex()] = i3data['y'] - 1
        ax = i3data['ax']
        ww = i3data['w']
        peaks[:, utilC.getXWidthIndex()] = 0.5 * numpy.sqrt(
            ww * ww / ax) / nm_per_pixel
        peaks[:, utilC.getYWidthIndex()] = 0.5 * numpy.sqrt(
            ww * ww * ax) / nm_per_pixel

    return peaks
Exemple #9
0
    def findPeaks(self, peaks):

        # Adjust x,y for margin.
        peaks[:, utilC.getXCenterIndex()] += float(self.margin)
        peaks[:, utilC.getYCenterIndex()] += float(self.margin)

        # Convert z (in nano-meters) to spline z units.
        zi = utilC.getZCenterIndex()
        peaks[:, zi] = self.s_to_psfs[0].getScaledZ(peaks[:, zi])

        # Split peaks into per-channel peaks.
        return self.mpu.splitPeaks(peaks)
Exemple #10
0
    def analyzeImage(self,
                     new_image,
                     bg_estimate=None,
                     save_residual=False,
                     verbose=False):

        image = fitting.padArray(new_image, self.peak_finder.margin)
        if bg_estimate is not None:
            bg_estimate = fitting.padArray(bg_estimate,
                                           self.peak_finder.margin)

        self.peak_finder.newImage(image, bg_estimate)
        self.peak_fitter.newImage(image)

        #
        # This is a lot simpler than 3D-DAOSTORM as we only do one pass,
        # hopefully the compressed sensing (FISTA) deconvolution finds all the
        # peaks and then we do a single pass of fitting.
        #
        if True:
            peaks = self.peak_finder.findPeaks()
            [fit_peaks, residual] = self.peak_fitter.fitPeaks(peaks)

        #
        # This is for testing if just using FISTA followed by the center
        # of mass calculation is basically as good as also doing the
        # additional MLE spline fitting step.
        #
        # The short answer is that it appears that it is not. It about
        # 1.3x worse in XY and about 4x worse in Z.
        #
        else:
            fit_peaks = self.peak_finder.findPeaks()

            # Adjust z scale.
            z_index = utilC.getZCenterIndex()
            z_size = (self.peak_fitter.spline.shape[2] - 1.0)
            status_index = utilC.getStatusIndex()
            fit_peaks[:, z_index] = z_size * fit_peaks[:, z_index]

            # Mark as converged.
            fit_peaks[:, status_index] = 1.0

            residual = None

        #
        # Subtract margin so that peaks are in the right
        # place with respect to the original image.
        #
        fit_peaks[:, utilC.getXCenterIndex()] -= float(self.peak_finder.margin)
        fit_peaks[:, utilC.getYCenterIndex()] -= float(self.peak_finder.margin)

        return [fit_peaks, residual]
    def analyzeImage(self, movie_reader, save_residual=False, verbose=False):
        """
        Analyze an "image" and return a list of the found localizations.

        Internally the list of localizations is a multiple of the number of planes.
        """
        #
        # Load and scale the images.
        #
        [images, fit_peaks_images] = self.loadImages(movie_reader)

        #
        # Load and scale the background estimates.
        #
        bg_estimates = self.loadBackgroundEstimates(movie_reader)

        self.peak_finder.newImages(images)
        self.peak_fitter.newImages(images)

        peaks = False
        for i in range(self.peak_finder.iterations):
            if verbose:
                print(" iteration", i)

            # Update background estimate.
            for j in range(self.n_planes):
                self.peak_finder.subtractBackground(
                    images[j] - fit_peaks_images[j], bg_estimates[j], j)

            # Find new peaks.
            [found_new_peaks,
             peaks] = self.peak_finder.findPeaks(fit_peaks_images, peaks)

            # Fit new peaks.
            if isinstance(peaks, numpy.ndarray):
                if verbose:
                    print("  found", peaks.shape[0] / self.n_planes)
                [peaks, fit_peaks_images] = self.peak_fitter.fitPeaks(peaks)
                if verbose:
                    print("  fit", peaks.shape[0] / self.n_planes)

            if not found_new_peaks:
                break

        if isinstance(peaks, numpy.ndarray):
            peaks[:, utilC.getXCenterIndex()] -= float(self.margin)
            peaks[:, utilC.getYCenterIndex()] -= float(self.margin)

        #
        # sa_utilities.std_analysis doesn't do anything with the second
        # argument, historically the residual, so just return None.
        #
        return [peaks, None]
Exemple #12
0
    def analyzeImage(self, new_image, bg_estimate = None, save_residual = False, verbose = False):
        
        image = fitting.padArray(new_image, self.peak_finder.margin)
        if bg_estimate is not None:
            bg_estimate = fitting.padArray(bg_estimate, self.peak_finder.margin)
            
        self.peak_finder.newImage(image, bg_estimate)
        self.peak_fitter.newImage(image)
        
        #
        # This is a lot simpler than 3D-DAOSTORM as we only do one pass,
        # hopefully the compressed sensing (FISTA) deconvolution finds all the
        # peaks and then we do a single pass of fitting.
        #
        if True:
            peaks = self.peak_finder.findPeaks()
            [fit_peaks, residual] = self.peak_fitter.fitPeaks(peaks)

        #
        # This is for testing if just using FISTA followed by the center
        # of mass calculation is basically as good as also doing the
        # additional MLE spline fitting step.
        #
        # The short answer is that it appears that it is not. It about
        # 1.3x worse in XY and about 4x worse in Z.
        #
        else:
            fit_peaks = self.peak_finder.findPeaks()

            # Adjust z scale.
            z_index = utilC.getZCenterIndex()
            z_size = (self.peak_fitter.spline.shape[2] - 1.0)
            status_index = utilC.getStatusIndex()
            fit_peaks[:,z_index] = z_size*fit_peaks[:,z_index]
            
            # Mark as converged.
            fit_peaks[:,status_index] = 1.0
            
            residual = None

        #
        # Subtract margin so that peaks are in the right
        # place with respect to the original image.
        #
        fit_peaks[:,utilC.getXCenterIndex()] -= float(self.peak_finder.margin)
        fit_peaks[:,utilC.getYCenterIndex()] -= float(self.peak_finder.margin)

        return [fit_peaks, residual]
    def getPeaks(self, threshold, margin):
        """
        Extract peaks from the deconvolved image and create
        an array that can be used by a peak fitter.
        
        FIXME: Need to compensate for up-sampling parameter in x,y.
        """

        fx = self.getXVector()

        # Get area, position, height.
        fd_peaks = fdUtil.getPeaks(fx, threshold, margin)
        num_peaks = fd_peaks.shape[0]

        peaks = numpy.zeros((num_peaks, utilC.getNPeakPar()))

        peaks[:, utilC.getXWidthIndex()] = numpy.ones(num_peaks)
        peaks[:, utilC.getYWidthIndex()] = numpy.ones(num_peaks)

        peaks[:, utilC.getXCenterIndex()] = fd_peaks[:, 2]
        peaks[:, utilC.getYCenterIndex()] = fd_peaks[:, 1]

        # Calculate height.
        #
        # FIXME: Typically the starting value for the peak height will be
        #        under-estimated unless a large enough number of FISTA
        #        iterations is performed to completely de-convolve the image.
        #
        h_index = utilC.getHeightIndex()
        #peaks[:,h_index] = fd_peaks[:,0]
        for i in range(num_peaks):
            peaks[i, h_index] = fd_peaks[i, 0] * self.psf_heights[int(
                round(fd_peaks[i, 3]))]

        # Calculate z (0.0 - 1.0).
        if (fx.shape[2] > 1):
            peaks[:, utilC.getZCenterIndex()] = fd_peaks[:, 3] / (
                float(fx.shape[2]) - 1.0)

        # Background term calculation.
        bg_index = utilC.getBackgroundIndex()
        for i in range(num_peaks):
            ix = int(round(fd_peaks[i, 1]))
            iy = int(round(fd_peaks[i, 2]))
            peaks[i, bg_index] = self.background[ix, iy]

        return peaks
Exemple #14
0
    def analyzeImage(self, new_image, bg_estimate = None, save_residual = False, verbose = False):

        #
        # Pad out arrays so that we can better analyze localizations
        # near the edge of the original image.
        #
        image = padArray(new_image, self.margin)
        residual = padArray(new_image, self.margin)
        if bg_estimate is not None:
            bg_estimate = padArray(bg_estimate, self.margin)

        self.peak_finder.newImage(image)
        self.peak_fitter.newImage(image)

        if save_residual:
            resid_dax = daxwriter.DaxWriter("residual.dax",
                                            residual.shape[0],
                                            residual.shape[1])

        peaks = False
        for i in range(self.peak_finder.iterations):
            if save_residual:
                resid_dax.addFrame(residual)

            no_bg_image = self.peak_finder.subtractBackground(residual, bg_estimate)
            [found_new_peaks, peaks] = self.peak_finder.findPeaks(no_bg_image, peaks)
            if isinstance(peaks, numpy.ndarray):
                [peaks, residual] = self.peak_fitter.fitPeaks(peaks)

            if verbose:
                if isinstance(peaks, numpy.ndarray):
                    print(" peaks:", i, found_new_peaks, peaks.shape[0])
                else:
                    print(" peaks:", i, found_new_peaks, "NA")

            if not found_new_peaks:
                break

        if save_residual:
            resid_dax.addFrame(residual)
            resid_dax.close()

        if isinstance(peaks, numpy.ndarray):
            peaks[:,utilC.getXCenterIndex()] -= float(self.margin)
            peaks[:,utilC.getYCenterIndex()] -= float(self.margin)

        return [peaks, residual]
def analyze(base_name, mlist_name, settings_name):
    parameters = params.ParametersMultiplane().initFromFile(settings_name)

    # Set to only analyze 1 frame, 1 iteration of peak finding.
    parameters.setAttr("max_frame", "int", 1)
    parameters.setAttr("iterations", "int", 1)

    # Analyze one frame.
    finder = PFPeakFinder(parameters)
    fitter = PFPeakFitter(parameters)
    finder_fitter = findPeaksStd.MPFinderFitter(parameters, finder, fitter)
    reader = findPeaksStd.MPMovieReader(base_name=base_name,
                                        parameters=parameters)
    stdAnalysis.standardAnalysis(finder_fitter, reader, mlist_name, parameters)

    # Evaluate found vs fit parameters.
    hi = utilC.getHeightIndex()
    xi = utilC.getXCenterIndex()
    yi = utilC.getYCenterIndex()

    # First identify peak pairs.
    fi_x = fitted_peaks[:, xi]
    fi_y = fitted_peaks[:, yi]
    fo_x = found_peaks[:, xi]
    fo_y = found_peaks[:, yi]

    dd = utilC.peakToPeakDist(fo_x, fo_y, fi_x, fi_y)
    di = utilC.peakToPeakIndex(fo_x, fo_y, fi_x, fi_y)

    print(numpy.mean(dd), fi_x.size, fo_x.size)

    fo_h = []
    fi_h = []
    for i in range(dd.size):
        if (dd[i] < 2.0):
            fo_h.append(found_peaks[i, hi])
            fi_h.append(fitted_peaks[di[i], hi])

    fi_h = numpy.array(fi_h)
    fo_h = numpy.array(fo_h)

    print(numpy.mean(fi_h), fi_h.size)
    print(numpy.mean(fo_h), fo_h.size)
    print(numpy.mean(fi_h) / numpy.mean(fo_h))
Exemple #16
0
    def getPeaks(self, threshold, margin):

        fx = self.getXVector()

        # Get area, position, height.
        fd_peaks = fdUtil.getPeaks(fx, threshold, margin)
        num_peaks = fd_peaks.shape[0]

        peaks = numpy.zeros((num_peaks, utilC.getNResultsPar()))

        peaks[:, utilC.getXWidthIndex()] = numpy.ones(num_peaks)
        peaks[:, utilC.getYWidthIndex()] = numpy.ones(num_peaks)

        peaks[:, utilC.getXCenterIndex()] = fd_peaks[:, 2]
        peaks[:, utilC.getYCenterIndex()] = fd_peaks[:, 1]

        # Calculate height.
        #
        # FIXME: Typically the starting value for the peak height will be
        #        under-estimated unless a large enough number of FISTA
        #        iterations is performed to completely de-convolve the image.
        #
        h_index = utilC.getHeightIndex()
        #peaks[:,h_index] = fd_peaks[:,0]
        for i in range(num_peaks):
            peaks[i, h_index] = fd_peaks[i, 0] * self.psf_heights[int(
                round(fd_peaks[i, 3]))]

        # Calculate z (0.0 - 1.0).
        peaks[:,
              utilC.getZCenterIndex()] = fd_peaks[:, 3] / (float(fx.shape[2]) -
                                                           1.0)

        # Background term calculation.
        bg_index = utilC.getBackgroundIndex()
        for i in range(num_peaks):
            ix = int(round(fd_peaks[i, 1]))
            iy = int(round(fd_peaks[i, 2]))
            peaks[i, bg_index] = self.background[ix, iy]

        return peaks
Exemple #17
0
    def analyzeImage(self, movie_reader, save_residual=False, verbose=False):

        # Load images & background estimates.
        [images, fit_peaks_images] = self.loadImages(movie_reader)

        # Pass images to fitter.
        self.peak_fitter.newImages(images)

        # Load ground truth localization positions.
        truth_peaks = movie_reader.getLocalizations()

        # Adjust to work with multi-plane.
        fit_peaks = self.peak_finder.findPeaks(truth_peaks.copy())

        # Calculate best fits peaks.
        [fit_peaks, fit_peaks_images] = self.peak_fitter.fitPeaks(fit_peaks)

        # Adjust for margin.
        fit_peaks[:, utilC.getXCenterIndex()] -= float(self.margin)
        fit_peaks[:, utilC.getYCenterIndex()] -= float(self.margin)

        return [fit_peaks, None]
    def __init__(self, parameters):
        super(MPPeakFinder, self).__init__(parameters)

        self.atrans = [None]
        self.backgrounds = []
        self.bg_filter = None
        self.bg_filter_sigma = parameters.getAttr("bg_filter_sigma")
        self.check_mode = False
        self.height_rescale = []
        self.images = []
        self.mapping_filename = None
        self.mfilters = []
        self.mfilters_z = []
        self.mpu = None
        self.n_channels = 0
        self.s_to_psfs = []
        self.variances = []
        self.vfilters = []
        self.xt = []
        self.yt = []
        self.z_values = []

        # Print warning about check mode
        if self.check_mode:
            print("Warning: Running in check mode.")

        # Load the splines.
        for spline_attr in mpUtilC.getSplineAttrs(parameters):
            self.s_to_psfs.append(
                splineToPSF.loadSpline(parameters.getAttr(spline_attr)))
            self.n_channels += 1

        # Assert that all the splines are the same size.
        for i in range(1, len(self.s_to_psfs)):
            assert (self.s_to_psfs[0].getSize() == self.s_to_psfs[i].getSize())

        #
        # Update margin based on the spline size. Note the assumption
        # that all of the splines are the same size, or at least smaller
        # than the spline for plane 0.
        #
        old_margin = self.margin
        self.margin = int((self.s_to_psfs[0].getSize() + 1) / 4 + 2)

        # Load the plane to plane mapping data & create affine transform objects.
        mappings = {}
        if parameters.hasAttr("mapping"):
            if os.path.exists(parameters.getAttr("mapping")):
                self.mapping_filename = parameters.getAttr("mapping")
                with open(parameters.getAttr("mapping"), 'rb') as fp:
                    mappings = pickle.load(fp)

        # Use self.margin - 1, because we added 1 to the x,y coordinates when we saved them.
        for i in range(self.n_channels - 1):
            self.xt.append(
                mpUtilC.marginCorrect(mappings["0_" + str(i + 1) + "_x"],
                                      self.margin - 1))
            self.yt.append(
                mpUtilC.marginCorrect(mappings["0_" + str(i + 1) + "_y"],
                                      self.margin - 1))
            self.atrans.append(
                affineTransformC.AffineTransform(xt=self.xt[i], yt=self.yt[i]))

        #
        # Note the assumption that the splines for each plane all use
        # the same z scale / have the same z range.
        #
        self.mfilters_z = parameters.getAttr("z_value", [0.0])
        for zval in self.mfilters_z:
            self.z_values.append(self.s_to_psfs[0].getScaledZ(zval))

        if parameters.hasAttr("peak_locations"):

            # Correct for any difference in the margins.
            self.peak_locations[:, utilC.getXCenterIndex(
            )] += self.margin - old_margin
            self.peak_locations[:, utilC.getYCenterIndex(
            )] += self.margin - old_margin

            # Provide the "correct" starting z value.
            #
            # FIXME: Should also allow the user to specify the peak z location
            #        as any fixed value could be so far off for some of the
            #        localizations that the fitting will fail.
            #
            self.peak_locations[:, utilC.getZCenterIndex()] = self.z_values[0]
Exemple #19
0
def measurePSF(movie_name, zfile_name, movie_mlist, psf_name, want2d = False, aoi_size = 12, z_range = 750.0, z_step = 50.0):
    """
    The actual z range is 2x z_range (i.e. from -z_range to z_range).
    """
    
    # Load dax file, z offset file and molecule list file.
    dax_data = datareader.inferReader(movie_name)
    z_offsets = None
    if os.path.exists(zfile_name):
        try:
            z_offsets = numpy.loadtxt(zfile_name, ndmin = 2)[:,1]
        except IndexError:
            z_offsets = None
            print("z offsets were not loaded.")
    i3_data = readinsight3.loadI3File(movie_mlist)

    if want2d:
        print("Measuring 2D PSF")
    else:
        print("Measuring 3D PSF")

    #
    # Go through the frames identifying good peaks and adding them
    # to the average psf. For 3D molecule z positions are rounded to 
    # the nearest 50nm.
    #
    z_mid = int(z_range/z_step)
    max_z = 2 * z_mid + 1

    average_psf = numpy.zeros((max_z,4*aoi_size,4*aoi_size))
    peaks_used = 0
    totals = numpy.zeros(max_z)
    [dax_x, dax_y, dax_l] = dax_data.filmSize()
    for curf in range(dax_l):

        # Select localizations in current frame & not near the edges.
        mask = (i3_data['fr'] == curf+1) & (i3_data['x'] > aoi_size) & (i3_data['x'] < (dax_x - aoi_size - 1)) & (i3_data['y'] > aoi_size) & (i3_data['y'] < (dax_y - aoi_size - 1))
        xr = i3_data['x'][mask]
        yr = i3_data['y'][mask]

        # Use the z offset file if it was specified, otherwise use localization z positions.
        if z_offsets is None:
            if (curf == 0):
                print("Using fit z locations.")
            zr = i3_data['z'][mask]
        else:
            if (curf == 0):
                print("Using z offset file.")
            zr = numpy.ones(xr.size) * z_offsets[curf]

        ht = i3_data['h'][mask]

        # Remove localizations that are too close to each other.
        in_peaks = numpy.zeros((xr.size,util_c.getNPeakPar()))
        in_peaks[:,util_c.getXCenterIndex()] = xr
        in_peaks[:,util_c.getYCenterIndex()] = yr
        in_peaks[:,util_c.getZCenterIndex()] = zr
        in_peaks[:,util_c.getHeightIndex()] = ht

        out_peaks = util_c.removeNeighbors(in_peaks, 2*aoi_size)
        #out_peaks = util_c.removeNeighbors(in_peaks, aoi_size)

        print(curf, "peaks in", in_peaks.shape[0], ", peaks out", out_peaks.shape[0])

        # Use remaining localizations to calculate spline.
        image = dax_data.loadAFrame(curf).astype(numpy.float64)

        xr = out_peaks[:,util_c.getXCenterIndex()]
        yr = out_peaks[:,util_c.getYCenterIndex()]
        zr = out_peaks[:,util_c.getZCenterIndex()]
        ht = out_peaks[:,util_c.getHeightIndex()]

        for i in range(xr.size):
            xf = xr[i]
            yf = yr[i]
            zf = zr[i]
            xi = int(xf)
            yi = int(yf)
            if want2d:
                zi = 0
            else:
                zi = int(round(zf/z_step) + z_mid)

            # check the z is in range
            if (zi > -1) and (zi < max_z):

                # get localization image
                mat = image[xi-aoi_size:xi+aoi_size,
                            yi-aoi_size:yi+aoi_size]

                # zoom in by 2x
                psf = scipy.ndimage.interpolation.zoom(mat, 2.0)

                # re-center image
                psf = scipy.ndimage.interpolation.shift(psf, (-2.0*(xf-xi), -2.0*(yf-yi)), mode='nearest')

                # add to average psf accumulator
                average_psf[zi,:,:] += psf
                totals[zi] += 1

    # Force PSF to be zero (on average) at the boundaries.
    for i in range(max_z):
        edge = numpy.concatenate((average_psf[i,0,:],
                                  average_psf[i,-1,:],
                                  average_psf[i,:,0],
                                  average_psf[i,:,-1]))
        average_psf[i,:,:] -= numpy.mean(edge)

    # Normalize the PSF.
    if want2d:
        max_z = 1

    for i in range(max_z):
        print(i, totals[i])
        if (totals[i] > 0.0):
            average_psf[i,:,:] = average_psf[i,:,:]/numpy.sum(numpy.abs(average_psf[i,:,:]))

    average_psf = average_psf/numpy.max(average_psf)

    # Save PSF (in image form).
    if True:
        import storm_analysis.sa_library.daxwriter as daxwriter
        dxw = daxwriter.DaxWriter(os.path.join(os.path.dirname(psf_name), "psf.dax"),
                                  average_psf.shape[1],
                                  average_psf.shape[2])
        for i in range(max_z):
            dxw.addFrame(1000.0 * average_psf[i,:,:] + 100)
        dxw.close()

    # Save PSF.
    if want2d:
        psf_dict = {"psf" : average_psf[0,:,:],
                    "type" : "2D"}

    else:
        cur_z = -z_range
        z_vals = []
        for i in range(max_z):
            z_vals.append(cur_z)
            cur_z += z_step

        psf_dict = {"psf" : average_psf,
                    "pixel_size" : 0.080, # 1/2 the camera pixel size in nm.
                    "type" : "3D",
                    "zmin" : -z_range,
                    "zmax" : z_range,
                    "zvals" : z_vals}

    pickle.dump(psf_dict, open(psf_name, 'wb'))
def psfLocalizations(i3_filename, mapping_filename, frame = 1, aoi_size = 8, movie_filename = None):

    # Load localizations.
    i3_reader = readinsight3.I3Reader(i3_filename)

    # Load mapping.
    mappings = {}
    if os.path.exists(mapping_filename):
        with open(mapping_filename, 'rb') as fp:
            mappings = pickle.load(fp)
    else:
        print("Mapping file not found, single channel data?")

    # Try and determine movie frame size.
    i3_metadata = readinsight3.loadI3Metadata(i3_filename)
    if i3_metadata is None:
        if movie_filename is None:
            raise Exception("I3 metadata not found and movie filename is not specified.")
        else:
            movie_fp = datareader.inferReader(movie_filename)
            [movie_y, movie_x] = movie_fp.filmSize()[:2]
    else:
        movie_data = i3_metadata.find("movie")

        # FIXME: These may be transposed?
        movie_x = int(movie_data.find("movie_x").text)
        movie_y = int(movie_data.find("movie_y").text)
    
    # Load localizations in the requested frame.
    locs = i3_reader.getMoleculesInFrame(frame)
    print("Loaded", locs.size, "localizations.")

    # Remove localizations that are too close to each other.
    in_locs = numpy.zeros((locs["x"].size, util_c.getNPeakPar()))
    in_locs[:,util_c.getXCenterIndex()] = locs["x"]
    in_locs[:,util_c.getYCenterIndex()] = locs["y"]

    out_locs = util_c.removeNeighbors(in_locs, 2 * aoi_size)

    xf = out_locs[:,util_c.getXCenterIndex()]
    yf = out_locs[:,util_c.getYCenterIndex()]

    #
    # Remove localizations that are too close to the edge or
    # outside of the image in any of the channels.
    #
    is_good = numpy.ones(xf.size, dtype = numpy.bool)
    for i in range(xf.size):

        # Check in Channel 0.
        if (xf[i] < aoi_size) or (xf[i] + aoi_size >= movie_x):
            is_good[i] = False
            continue
        
        if (yf[i] < aoi_size) or (yf[i] + aoi_size >= movie_y):
            is_good[i] = False
            continue

        # Check other channels.
        for key in mappings:
            if not is_good[i]:
                break
            
            coeffs = mappings[key]
            [ch1, ch2, axis] = key.split("_")
            if (ch1 == "0"):

                if (axis == "x"):
                    xm = coeffs[0] + coeffs[1]*xf[i] + coeffs[2]*yf[i]
                    if (xm < aoi_size) or (xm + aoi_size >= movie_x):
                        is_good[i] = False
                        break

                elif (axis == "y"):
                    ym = coeffs[0] + coeffs[1]*xf[i] + coeffs[2]*yf[i]
                    if (ym < aoi_size) or (ym + aoi_size >= movie_y):
                        is_good[i] = False
                        break

    #
    # Save localizations for each channel.
    #
    gx = xf[is_good]
    gy = yf[is_good]

    basename = os.path.splitext(i3_filename)[0]
    with writeinsight3.I3Writer(basename + "_c1_psf.bin") as w3:
        w3.addMoleculesWithXY(gx, gy)
    
    index = 1
    while ("0_" + str(index) + "_x" in mappings):
        cx = mappings["0_" + str(index) + "_x"]
        cy = mappings["0_" + str(index) + "_y"]
        #cx = mappings[str(index) + "_0" + "_x"]
        #cy = mappings[str(index) + "_0" + "_y"]
        xm = cx[0] + cx[1] * gx + cx[2] * gy
        ym = cy[0] + cy[1] * gx + cy[2] * gy

        with writeinsight3.I3Writer(basename + "_c" + str(index+1) + "_psf.bin") as w3:
            w3.addMoleculesWithXY(xm, ym)

        index += 1

    #
    # Print localizations that were kept.
    #
    print(gx.size, "localizations were kept:")
    for i in range(gx.size):
        print("ch0: {0:.2f} {1:.2f}".format(gx[i], gy[i]))
        index = 1
        while ("0_" + str(index) + "_x" in mappings):
            cx = mappings["0_" + str(index) + "_x"]
            cy = mappings["0_" + str(index) + "_y"]
            xm = cx[0] + cx[1] * gx[i] + cx[2] * gy[i]
            ym = cy[0] + cy[1] * gx[i] + cy[2] * gy[i]
            print("ch" + str(index) + ": {0:.2f} {1:.2f}".format(xm, ym))
            index += 1
        print("")
    print("")
Exemple #21
0
    def __init__(self, parameters):

        # Member variables.
        self.background = None  # Current estimate of the image background.
        self.image = None  # The original image.
        self.iterations = parameters.iterations  # Maximum number of cycles of peak finding, fitting and subtraction to perform.
        self.margin = PeakFinderFitter.margin  # Size of the unanalyzed "edge" around the image.
        self.neighborhood = PeakFinder.unconverged_dist * parameters.sigma  # Radius for marking neighbors as unconverged.
        self.new_peak_radius = PeakFinder.new_peak_dist  # Minimum allowed distance between new peaks and current peaks.
        self.parameters = parameters  # Keep access to the parameters object.
        self.peak_locations = None  # Initial peak locations, as explained below.
        self.peak_mask = None  # Mask for limiting peak identification to a particular AOI.
        self.sigma = parameters.sigma  # Peak sigma (in pixels).
        self.taken = None  # Spots in the image where a peak has already been added.
        self.threshold = parameters.threshold  # Peak minimum threshold (height, in camera units).
        self.z_value = 0.0  # The starting z value to use for peak fitting.

        # Radius (in pixels) over which the maxima is maximal.
        if hasattr(parameters, "find_max_radius"):
            self.find_max_radius = float(parameters.find_max_radius)
        else:
            self.find_max_radius = 5

        #
        # This is for is you already know where your want fitting to happen, as
        # for example in a bead calibration movie and you just want to use the
        # approximate locations as inputs for fitting.
        #
        # peak_locations is a text file with the peak x, y, height and background
        # values as white spaced columns (x and y positions are in pixels as
        # determined using visualizer).
        #
        # 1.0 2.0 1000.0 100.0
        # 10.0 5.0 2000.0 200.0
        # ...
        #
        if hasattr(parameters, "peak_locations"):
            print("Using peak starting locations specified in",
                  parameters.peak_locations)

            # Only do one cycle of peak finding as we'll always return the same locations.
            if (self.iterations != 1):
                print("WARNING: setting number of iterations to 1!")
                self.iterations = 1

            # Load peak x,y locations.
            peak_locs = numpy.loadtxt(parameters.peak_locations, ndmin=2)
            print(peak_locs.shape)

            # Create peak array.
            self.peak_locations = numpy.zeros(
                (peak_locs.shape[0], util_c.getNResultsPar()))
            self.peak_locations[:, util_c.getXCenterIndex(
            )] = peak_locs[:, 1] + self.margin
            self.peak_locations[:, util_c.getYCenterIndex(
            )] = peak_locs[:, 0] + self.margin
            self.peak_locations[:, util_c.getHeightIndex()] = peak_locs[:, 2]
            self.peak_locations[:, util_c.getBackgroundIndex()] = peak_locs[:,
                                                                            3]

            self.peak_locations[:, util_c.getXWidthIndex()] = numpy.ones(
                peak_locs.shape[0]) * self.sigma
            self.peak_locations[:, util_c.getYWidthIndex()] = numpy.ones(
                peak_locs.shape[0]) * self.sigma
Exemple #22
0
def measurePSF(movie_name,
               zfile_name,
               movie_mlist,
               psf_name,
               want2d=False,
               aoi_size=12,
               z_range=750.0,
               z_step=50.0):
    """
    The actual z range is 2x z_range (i.e. from -z_range to z_range).
    """

    # Load dax file, z offset file and molecule list file.
    dax_data = datareader.inferReader(movie_name)
    z_offsets = None
    if os.path.exists(zfile_name):
        try:
            z_offsets = numpy.loadtxt(zfile_name, ndmin=2)[:, 1]
        except IndexError:
            z_offsets = None
            print("z offsets were not loaded.")
    i3_data = readinsight3.loadI3File(movie_mlist)

    if want2d:
        print("Measuring 2D PSF")
    else:
        print("Measuring 3D PSF")

    #
    # Go through the frames identifying good peaks and adding them
    # to the average psf. For 3D molecule z positions are rounded to
    # the nearest 50nm.
    #
    z_mid = int(z_range / z_step)
    max_z = 2 * z_mid + 1

    average_psf = numpy.zeros((max_z, 4 * aoi_size, 4 * aoi_size))
    peaks_used = 0
    totals = numpy.zeros(max_z)
    [dax_x, dax_y, dax_l] = dax_data.filmSize()
    for curf in range(dax_l):

        # Select localizations in current frame & not near the edges.
        mask = (i3_data['fr'] == curf + 1) & (i3_data['x'] > aoi_size) & (
            i3_data['x'] <
            (dax_x - aoi_size - 1)) & (i3_data['y'] >
                                       aoi_size) & (i3_data['y'] <
                                                    (dax_y - aoi_size - 1))
        xr = i3_data['x'][mask]
        yr = i3_data['y'][mask]

        # Use the z offset file if it was specified, otherwise use localization z positions.
        if z_offsets is None:
            if (curf == 0):
                print("Using fit z locations.")
            zr = i3_data['z'][mask]
        else:
            if (curf == 0):
                print("Using z offset file.")
            zr = numpy.ones(xr.size) * z_offsets[curf]

        ht = i3_data['h'][mask]

        # Remove localizations that are too close to each other.
        in_peaks = numpy.zeros((xr.size, util_c.getNPeakPar()))
        in_peaks[:, util_c.getXCenterIndex()] = xr
        in_peaks[:, util_c.getYCenterIndex()] = yr
        in_peaks[:, util_c.getZCenterIndex()] = zr
        in_peaks[:, util_c.getHeightIndex()] = ht

        out_peaks = util_c.removeNeighbors(in_peaks, 2 * aoi_size)
        #out_peaks = util_c.removeNeighbors(in_peaks, aoi_size)

        print(curf, "peaks in", in_peaks.shape[0], ", peaks out",
              out_peaks.shape[0])

        # Use remaining localizations to calculate spline.
        image = dax_data.loadAFrame(curf).astype(numpy.float64)

        xr = out_peaks[:, util_c.getXCenterIndex()]
        yr = out_peaks[:, util_c.getYCenterIndex()]
        zr = out_peaks[:, util_c.getZCenterIndex()]
        ht = out_peaks[:, util_c.getHeightIndex()]

        for i in range(xr.size):
            xf = xr[i]
            yf = yr[i]
            zf = zr[i]
            xi = int(xf)
            yi = int(yf)
            if want2d:
                zi = 0
            else:
                zi = int(round(zf / z_step) + z_mid)

            # check the z is in range
            if (zi > -1) and (zi < max_z):

                # get localization image
                mat = image[xi - aoi_size:xi + aoi_size,
                            yi - aoi_size:yi + aoi_size]

                # zoom in by 2x
                psf = scipy.ndimage.interpolation.zoom(mat, 2.0)

                # re-center image
                psf = scipy.ndimage.interpolation.shift(
                    psf, (-2.0 * (xf - xi), -2.0 * (yf - yi)), mode='nearest')

                # add to average psf accumulator
                average_psf[zi, :, :] += psf
                totals[zi] += 1

    # Force PSF to be zero (on average) at the boundaries.
    for i in range(max_z):
        edge = numpy.concatenate((average_psf[i, 0, :], average_psf[i, -1, :],
                                  average_psf[i, :, 0], average_psf[i, :, -1]))
        average_psf[i, :, :] -= numpy.mean(edge)

    # Normalize the PSF.
    if want2d:
        max_z = 1

    for i in range(max_z):
        print(i, totals[i])
        if (totals[i] > 0.0):
            average_psf[i, :, :] = average_psf[i, :, :] / numpy.sum(
                numpy.abs(average_psf[i, :, :]))

    average_psf = average_psf / numpy.max(average_psf)

    # Save PSF (in image form).
    if True:
        import storm_analysis.sa_library.daxwriter as daxwriter
        dxw = daxwriter.DaxWriter(
            os.path.join(os.path.dirname(psf_name), "psf.dax"),
            average_psf.shape[1], average_psf.shape[2])
        for i in range(max_z):
            dxw.addFrame(1000.0 * average_psf[i, :, :] + 100)
        dxw.close()

    # Save PSF.
    if want2d:
        psf_dict = {"psf": average_psf[0, :, :], "type": "2D"}

    else:
        cur_z = -z_range
        z_vals = []
        for i in range(max_z):
            z_vals.append(cur_z)
            cur_z += z_step

        psf_dict = {
            "psf": average_psf,
            "pixel_size": 0.080,  # 1/2 the camera pixel size in nm.
            "type": "3D",
            "zmin": -z_range,
            "zmax": z_range,
            "zvals": z_vals
        }

    with open(psf_name, 'wb') as fp:
        pickle.dump(psf_dict, fp)
Exemple #23
0
total = 0.0
[dax_x, dax_y, dax_l] = dax_data.filmSize()
while (curf < dax_l) and (peaks_used < min_peaks):

    # Select localizations in current frame & not near the edges.
    mask = (i3_data['fr'] == curf) & (i3_data['x'] > aoi_size) & (
        i3_data['x'] < (dax_y - aoi_size - 1)) & (i3_data['y'] > aoi_size) & (
            i3_data['y'] < (dax_x - aoi_size - 1))
    xr = i3_data['x'][mask]
    yr = i3_data['y'][mask]
    ht = i3_data['h'][mask]

    # Remove localizations that are too close to each other.
    in_peaks = numpy.zeros((xr.size, util_c.getNResultsPar()))
    in_peaks[:, util_c.getXCenterIndex()] = xr
    in_peaks[:, util_c.getYCenterIndex()] = yr
    in_peaks[:, util_c.getHeightIndex()] = ht

    out_peaks = util_c.removeNeighbors(in_peaks, aoi_size)

    print(curf, in_peaks.shape, out_peaks.shape)

    # Use remaining localizations to calculate spline.
    image = dax_data.loadAFrame(curf - 1).astype(numpy.float64)

    xr = out_peaks[:, util_c.getXCenterIndex()]
    yr = out_peaks[:, util_c.getYCenterIndex()]
    ht = out_peaks[:, util_c.getHeightIndex()]

    for i in range(xr.size):
        xf = xr[i]
Exemple #24
0
curf = 1
peaks_used = 0
total = 0.0
[dax_x, dax_y, dax_l] = dax_data.filmSize()
while (curf < dax_l) and (peaks_used < min_peaks):

    # Select localizations in current frame & not near the edges.
    mask = (i3_data['fr'] == curf) & (i3_data['x'] > aoi_size) & (i3_data['x'] < (dax_y - aoi_size - 1)) & (i3_data['y'] > aoi_size) & (i3_data['y'] < (dax_x - aoi_size - 1))
    xr = i3_data['x'][mask]
    yr = i3_data['y'][mask]
    ht = i3_data['h'][mask]

    # Remove localizations that are too close to each other.
    in_peaks = numpy.zeros((xr.size,util_c.getNResultsPar()))
    in_peaks[:,util_c.getXCenterIndex()] = xr
    in_peaks[:,util_c.getYCenterIndex()] = yr
    in_peaks[:,util_c.getHeightIndex()] = ht

    out_peaks = util_c.removeNeighbors(in_peaks, aoi_size)

    print(curf, in_peaks.shape, out_peaks.shape)

    # Use remaining localizations to calculate spline.
    image = dax_data.loadAFrame(curf-1).astype(numpy.float64)

    xr = out_peaks[:,util_c.getXCenterIndex()]
    yr = out_peaks[:,util_c.getYCenterIndex()]
    ht = out_peaks[:,util_c.getHeightIndex()]

    for i in range(xr.size):
        xf = xr[i]