def dual_thrust(asset, start_date, end_date, scenarios, config):
    nearby = config["nearby"]
    rollrule = config["rollrule"]
    start_d = misc.day_shift(start_date, "-2b")
    file_prefix = config["file_prefix"] + "_" + asset + "_"
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, "m", need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    output = {}
    for ix, s in enumerate(scenarios):
        config["win"] = s[1]
        config["k"] = s[0]
        config["m"] = s[2]
        config["f"] = s[3]
        (res, closed_trades, ts) = dual_thrust_sim(mdf, config)
        output[ix] = res
        print "saving results for scen = %s" % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + "_trades.csv"
        trades = pd.DataFrame.from_dict(all_trades).T
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + "_dailydata.csv"
        ts.to_csv(fname)
    fname = file_prefix + "stats.csv"
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
Exemple #2
0
def dual_thrust( asset, start_date, end_date, scenarios, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-4b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'm', need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, s in enumerate(scenarios):
        config['win'] = s[1]
        config['k'] = s[0]
        config['m'] = s[2]
        (res, closed_trades, ts) = dual_thrust_sim( ddf, mdf, config)
        output[ix] = res
        print 'saving results for scen = %s' % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + '_trades.csv'
        trades = pd.DataFrame.from_dict(all_trades).T  
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + '_dailydata.csv'
        ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def dual_thrust( asset, start_date, end_date, scenarios, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-2b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'm', need_shift=True)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, s in enumerate(scenarios):
        config['win'] = s[1]
        config['k'] = s[0]
        config['m'] = s[2]
        (res, closed_trades, ts) = dual_thrust_sim( ddf, mdf, config)
        output[ix] = res
        print 'saving results for scen = %s' % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + '_trades.csv'
        trades = pd.DataFrame.from_dict(all_trades).T  
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + '_dailydata.csv'
        ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def fisher_swing(asset, start_date, end_date, freqs, windows, config):
    nearby = config["nearby"]
    rollrule = config["rollrule"]
    file_prefix = config["file_prefix"] + "_" + asset + "_"
    df = misc.nearby(asset, nearby, start_date, end_date, rollrule, "m", need_shift=True)
    df = backtest.cleanup_mindata(df, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix * 10 + iy
            config["win"] = win
            config["freq"] = freq
            (res, closed_trades, ts) = fisher_swing_sim(df, xdf, config)
            output[idx] = res
            print "saving results for scen = %s" % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + "_trades.csv"
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + "_dailydata.csv"
            ts.to_csv(fname)
    fname = file_prefix + "stats.csv"
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
Exemple #5
0
def r_breaker( asset, start_date, end_date, scenarios, freqs, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    start_d = misc.day_shift(start_date, '-1b')
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    ddf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    mdf = backtest.cleanup_mindata(mdf, asset)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, freq in enumerate(freqs):
        if freq !='1min':
            df = dh.conv_ohlc_freq(mdf, freq)
        else:
            df = mdf
        for iy, k in enumerate(scenarios):
            idx = ix*10+iy
            config['k'] = k
            (res, closed_trades, ts) = r_breaker_sim( ddf, df, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def aberration( asset, start_date, end_date, freqs, windows, config):
    nearby  = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    df = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    df = backtest.cleanup_mindata(df, asset)    
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix*10+iy
            config['win'] = win
            (res, closed_trades, ts) = aberration_sim( xdf, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
def fisher_swing(asset, start_date, end_date, freqs, windows, config):
    nearby = config['nearby']
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    df = misc.nearby(asset,
                     nearby,
                     start_date,
                     end_date,
                     rollrule,
                     'm',
                     need_shift=True)
    df = backtest.cleanup_mindata(df, asset)
    output = {}
    for ix, freq in enumerate(freqs):
        xdf = dh.conv_ohlc_freq(df, freq)
        for iy, win in enumerate(windows):
            idx = ix * 10 + iy
            config['win'] = win
            config['freq'] = freq
            (res, closed_trades, ts) = fisher_swing_sim(df, xdf, config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return
Exemple #8
0
def turtle( asset, start_date, end_date, systems, config):
    rollrule = config['rollrule']
    nearby   = config['nearby']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
    start_d  = misc.day_shift(start_date, '-'+str(max([ max(sys) for sys in systems]))+'b')
    ddf = misc.nearby(asset, nearby, start_d, end_date, rollrule, 'd', need_shift=True)
    mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
    #ddf = dh.conv_ohlc_freq(mdf, 'D')
    output = {}
    for ix, sys in enumerate(systems):
        config['signals'] = sys[:3]
        config['max_loss'] = sys[3]
        config['max_pos'] = sys[4]
        (res, closed_trades, ts) = turtle_sim( ddf, mdf, config)
        output[ix] = res
        print 'saving results for scen = %s' % str(ix)
        all_trades = {}
        for i, tradepos in enumerate(closed_trades):
            all_trades[i] = strat.tradepos2dict(tradepos)
        fname = file_prefix + str(ix) + '_trades.csv'
        trades = pd.DataFrame.from_dict(all_trades).T  
        trades.to_csv(fname)
        fname = file_prefix + str(ix) + '_dailydata.csv'
        ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 
Exemple #9
0
def simlauncher_min(config_file):
    sim_config = {}
    with open(config_file, 'r') as fp:
        sim_config = json.load(fp)
    bktest_split = sim_config['sim_func'].split('.')
    bktest_module = __import__(bktest_split[0])
    run_sim = getattr(bktest_module, bktest_split[1])
    dir_name = config_file.split('.')[0]
    test_folder = get_bktest_folder()
    file_prefix = test_folder + dir_name + os.path.sep
    if not os.path.exists(file_prefix):
        os.makedirs(file_prefix)
    sim_list = sim_config['products']
    config = {}
    start_date = datetime.datetime.strptime(sim_config['start_date'],
                                            '%Y%m%d').date()
    config['start_date'] = start_date
    end_date = datetime.datetime.strptime(sim_config['end_date'],
                                          '%Y%m%d').date()
    config['end_date'] = end_date
    scen_dim = [len(sim_config[s]) for s in sim_config['scen_keys']]
    outcol_list = ['asset', 'scenario'] + sim_config['scen_keys'] \
                + ['sharp_ratio', 'tot_pnl', 'std_pnl', 'num_days', \
                    'max_drawdown', 'max_dd_period', 'profit_dd_ratio', \
                    'all_profit', 'tot_cost', 'win_ratio', 'num_win', 'num_loss', \
                    'profit_per_win', 'profit_per_loss']
    scenarios = [list(s) for s in np.ndindex(tuple(scen_dim))]
    config.update(sim_config['config'])
    config['pos_class'] = eval(sim_config['pos_class'])
    if 'proc_func' in sim_config:
        config['proc_func'] = eval(sim_config['proc_func'])
    file_prefix = file_prefix + sim_config['sim_name']
    if config['close_daily']:
        file_prefix = file_prefix + 'daily_'
    config['file_prefix'] = file_prefix
    summary_df = pd.DataFrame()
    fname = config['file_prefix'] + 'summary.csv'
    if os.path.isfile(fname):
        summary_df = pd.DataFrame.from_csv(fname)
    for asset in sim_list:
        file_prefix = config['file_prefix'] + '_' + asset + '_'
        fname = file_prefix + 'stats.json'
        output = {}
        if os.path.isfile(fname):
            with open(fname, 'r') as fp:
                output = json.load(fp)
        if len(output.keys()) < len(scenarios):
            if asset in sim_start_dict:
                start_date = max(sim_start_dict[asset], config['start_date'])
            else:
                start_date = config['start_date']
            if 'offset' in sim_config:
                config[
                    'offset'] = sim_config['offset'] * trade_offset_dict[asset]
            else:
                config['offset'] = trade_offset_dict[asset]
            config['marginrate'] = (sim_margin_dict[asset],
                                    sim_margin_dict[asset])
            config['nearby'] = 1
            config['rollrule'] = '-50b'
            config['exit_min'] = 2112
            config['no_trade_set'] = range(300, 301) + range(
                1500, 1501) + range(2059, 2100)
            if asset in ['cu', 'al', 'zn']:
                config['nearby'] = 3
                config['rollrule'] = '-1b'
            elif asset in ['IF', 'IH', 'IC']:
                config['rollrule'] = '-2b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            elif asset in ['au', 'ag']:
                config['rollrule'] = '-25b'
            elif asset in ['TF', 'T']:
                config['rollrule'] = '-20b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            config['no_trade_set'] = []
            nearby = config['nearby']
            rollrule = config['rollrule']
            if nearby > 0:
                mdf = misc.nearby(asset,
                                  nearby,
                                  start_date,
                                  end_date,
                                  rollrule,
                                  'm',
                                  need_shift=True,
                                  database='hist_data')
            mdf = cleanup_mindata(mdf, asset)
            if 'need_daily' in sim_config:
                ddf = misc.nearby(asset,
                                  nearby,
                                  start_date,
                                  end_date,
                                  rollrule,
                                  'd',
                                  need_shift=True,
                                  database='hist_data')
                config['ddf'] = ddf
            for ix, s in enumerate(scenarios):
                fname1 = file_prefix + str(ix) + '_trades.csv'
                fname2 = file_prefix + str(ix) + '_dailydata.csv'
                if os.path.isfile(fname1) and os.path.isfile(fname2):
                    continue
                for key, seq in zip(sim_config['scen_keys'], s):
                    config[key] = sim_config[key][seq]
                df = mdf.copy(deep=True)
                (res, closed_trades, ts) = run_sim(df, config)
                res.update(dict(zip(sim_config['scen_keys'], s)))
                res['asset'] = asset
                output[ix] = res
                print 'saving results for asset = %s, scen = %s' % (asset,
                                                                    str(ix))
                all_trades = {}
                for i, tradepos in enumerate(closed_trades):
                    all_trades[i] = strat.tradepos2dict(tradepos)
                trades = pd.DataFrame.from_dict(all_trades).T
                trades.to_csv(fname1)
                ts.to_csv(fname2)
                fname = file_prefix + 'stats.json'
                try:
                    with open(fname, 'w') as ofile:
                        json.dump(output, ofile)
                except:
                    continue
        res = pd.DataFrame.from_dict(output, orient='index')
        res.index.name = 'scenario'
        res = res.sort(columns=['sharp_ratio'], ascending=False)
        res = res.reset_index()
        res.set_index(['asset', 'scenario'])
        out_res = res[outcol_list]
        if len(summary_df) == 0:
            summary_df = out_res[:10].copy(deep=True)
        else:
            summary_df = summary_df.append(out_res[:10])
        fname = config['file_prefix'] + 'summary.csv'
        summary_df.to_csv(fname)
    return
Exemple #10
0
def simcontract_min(config_file):
    sim_config = {}
    with open(config_file, 'r') as fp:
        sim_config = json.load(fp)
    bktest_split = sim_config['sim_func'].split('.')
    run_sim = __import__('.'.join(bktest_split[:-1]))
    for i in range(1, len(bktest_split)):
        run_sim = getattr(run_sim, bktest_split[i])
    dir_name = config_file.split('.')[0]
    dir_name = dir_name.split(os.path.sep)[-1]
    test_folder = get_bktest_folder()
    file_prefix = test_folder + dir_name + os.path.sep
    if not os.path.exists(file_prefix):
        os.makedirs(file_prefix)
    sim_list = sim_config['products']
    if type(sim_list[0]).__name__ != 'list':
        sim_list = [[str(asset)] for asset in sim_list]
    sim_mode = sim_config.get('sim_mode', 'OR')
    calc_coeffs = sim_config.get('calc_coeffs', [1, -1])
    cont_maplist = sim_config.get('cont_maplist', [])
    sim_period = sim_config.get('sim_period', '-12m')
    need_daily = sim_config.get('need_daily', False)
    if len(cont_maplist) == 0:
        cont_maplist = [[0]] * len(sim_list)
    config = {}
    start_date = datetime.datetime.strptime(sim_config['start_date'], '%Y%m%d').date()
    config['start_date'] = start_date
    end_date   = datetime.datetime.strptime(sim_config['end_date'], '%Y%m%d').date()
    config['end_date'] = end_date
    scen_dim = [ len(sim_config[s]) for s in sim_config['scen_keys']]
    outcol_list = ['asset', 'scenario'] + sim_config['scen_keys'] \
                + ['sharp_ratio', 'tot_pnl', 'std_pnl', 'num_days', \
                    'max_drawdown', 'max_dd_period', 'profit_dd_ratio', \
                    'all_profit', 'tot_cost', 'win_ratio', 'num_win', 'num_loss', \
                    'profit_per_win', 'profit_per_loss']
    scenarios = [list(s) for s in np.ndindex(tuple(scen_dim))]
    config.update(sim_config['config'])
    if 'pos_class' in sim_config:
        config['pos_class'] = eval(sim_config['pos_class'])
    if 'proc_func' in sim_config:
        config['proc_func'] = eval(sim_config['proc_func'])
    file_prefix = file_prefix + sim_config['sim_name']
    if 'close_daily' in config and config['close_daily']:
        file_prefix = file_prefix + 'daily_'
    config['file_prefix'] = file_prefix
    summary_df = pd.DataFrame()
    fname = config['file_prefix'] + 'summary.csv'
    if os.path.isfile(fname):
        summary_df = pd.DataFrame.from_csv(fname)
    for assets, cont_map in zip(sim_list, cont_maplist):
        file_prefix = config['file_prefix'] + '_' + sim_mode + '_' + '_'.join(assets) + '_'
        fname = file_prefix + 'stats.json'
        output = {'total': {}, 'cont': {}}
        if os.path.isfile(fname):
            with open(fname, 'r') as fp:
                output = json.load(fp)
        #if len(output['total'].keys()) == len(scenarios):
        #    continue
        min_data = {}
        day_data = {}
        config['tick_base'] = 0
        config['marginrate'] = (0, 0)
        rollrule = '-50b'
        config['exit_min'] = config.get('exit_min', 2057)
        config['no_trade_set'] = config.get('no_trade_set', [])
        if assets[0] in ['cu', 'al', 'zn']:
            rollrule = '-1b'
        elif assets[0] in ['IF', 'IH', 'IC']:
            rollrule = '-2b'
        elif assets[0] in ['au', 'ag']:
            rollrule = '-25b'
        elif assets[0] in ['TF', 'T']:
            rollrule = '-20b'
        rollrule = config.get('rollrule', rollrule)
        contlist = {}
        exp_dates = {}
        for i, prod in enumerate(assets):
            cont_mth, exch = mysqlaccess.prod_main_cont_exch(prod)
            contlist[prod] = misc.contract_range(prod, exch, cont_mth, start_date, end_date)
            exp_dates[prod] = [misc.contract_expiry(cont) for cont in contlist[prod]]
            edates = [ misc.day_shift(d, rollrule) for d in exp_dates[prod] ]
            sdates = [ misc.day_shift(d, sim_period) for d in exp_dates[prod] ]
            config['tick_base'] += trade_offset_dict[prod]
            config['marginrate'] = ( max(config['marginrate'][0], sim_margin_dict[prod]), max(config['marginrate'][1], sim_margin_dict[prod]))
            min_data[prod] = {}
            day_data[prod] = {}
            for cont, sd, ed in zip(contlist[prod], sdates, edates):
                minid_start = 1500
                minid_end = 2114
                if prod in misc.night_session_markets:
                    minid_start = 300
                tmp_df = mysqlaccess.load_min_data_to_df('fut_min', cont, sd, ed, minid_start, minid_end, database = 'hist_data')
                tmp_df['contract'] = cont
                min_data[prod][cont] = cleanup_mindata( tmp_df, prod)
                if need_daily:
                    tmp_df = mysqlaccess.load_daily_data_to_df('fut_daily', cont, sd, ed, database = 'hist_data')
                    day_data[prod][cont] = tmp_df
        if 'offset' in sim_config:
            config['offset'] = sim_config['offset'] * config['tick_base']
        else:
            config['offset'] = config['tick_base']
        for ix, s in enumerate(scenarios):
            fname1 = file_prefix + str(ix) + '_trades.csv'
            fname2 = file_prefix + str(ix) + '_dailydata.csv'
            if os.path.isfile(fname1) and os.path.isfile(fname2):
                continue
            for key, seq in zip(sim_config['scen_keys'], s):
                config[key] = sim_config[key][seq]
            df_list = []
            trade_list = []
            for idx in range(abs(min(cont_map)), len(contlist[assets[0]]) - max(cont_map)):
                cont = contlist[assets[0]][idx]
                edate = misc.day_shift(exp_dates[assets[0]][idx], rollrule)
                if sim_mode == 'OR':
                    mdf = min_data[assets[0]][cont]
                    mdf = mdf[mdf.date <= edate]
                    if need_daily:
                        ddf = day_data[assets[0]][cont]
                        config['ddf'] = ddf[ddf.index <= edate]
                        if len(config['ddf']) < 10:
                            continue
                else:
                    mode_keylist = sim_mode.split('-')
                    smode = mode_keylist[0]
                    cmode = mode_keylist[1]
                    all_data = []
                    if smode == 'TS':
                        all_data = [min_data[assets[0]][contlist[assets[0]][idx+i]] for i in cont_map]
                    else:
                        all_data = [min_data[asset][contlist[asset][idx+i]] for asset, i in zip(assets, cont_map)]
                    if cmode == 'Full':
                        mdf = pd.concat(all_data, axis = 1, join = 'inner')
                        mdf.columns = [iter + str(i) for i, x in enumerate(all_data) for iter in x.columns]
                        mdf = mdf[ mdf.date0 < edate]
                    else:
                        #print all_data[0], all_data[1]
                        for i, (coeff, tmpdf) in enumerate(zip(calc_coeffs, all_data)):
                            if i == 0:
                                xopen = tmpdf['open'] * coeff
                                xclose = tmpdf['close'] * coeff
                            else:
                                xopen = xopen + tmpdf['open'] * coeff
                                xclose = xclose + tmpdf['close'] * coeff
                        xopen = xopen.dropna()
                        xclose = xclose.dropna()
                        xhigh = pd.concat([xopen, xclose], axis = 1).max(axis = 1)
                        xlow = pd.concat([xopen, xclose], axis = 1).min(axis = 1)
                        col_list = ['date', 'min_id', 'volume', 'openInterest']                        
                        mdf = pd.concat([ xopen, xhigh, xlow, xclose] + [all_data[0][col] for col in col_list], axis = 1, join = 'inner')
                        mdf.columns = ['open', 'high', 'low', 'close'] + col_list
                        mdf['contract'] = cont
                        #print mdf
                    if need_daily:
                        if smode == 'TS':
                            all_data = [day_data[assets[0]][contlist[assets[0]][idx+i]] for i in cont_map]
                        else:
                            all_data = [day_data[asset][contlist[asset]][idx+i] for asset, i in zip(assets, cont_map)]
                        if cmode == 'Full':
                            ddf = pd.concat(all_data, axis = 1, join = 'inner')
                            ddf.columns = [iter + str(i) for i, x in enumerate(all_data) for iter in x.columns]
                            config['ddf'] = ddf[ddf.index <= edate]
                        else:
                            for i, (coeff, tmpdf) in enumerate(zip(calc_coeffs, all_data)):
                                if i == 0:
                                    xopen = tmpdf['open'] * coeff
                                    xclose = tmpdf['close'] * coeff
                                else:
                                    xopen = xopen + tmpdf['open'] * coeff
                                    xclose = xclose + tmpdf['close'] * coeff
                            xhigh = pd.concat([xopen, xclose], axis = 1).max(axis = 1)
                            xlow = pd.concat([xopen, xclose], axis = 1).min(axis = 1)
                            col_list = ['volume', 'openInterest']
                            ddf = pd.concat([ xopen, xhigh, xlow, xclose] + [all_data[0][col] for col in col_list], axis = 1, join = 'inner')
                            ddf.columns = ['open', 'high', 'low', 'close'] + col_list
                            ddf['contract'] = cont
                            config['ddf'] = ddf[ddf.index <= edate]
                        if len(config['ddf']) < 10:
                            continue
                df = mdf.copy(deep = True)
                df, closed_trades = run_sim( df, config)
                df_list.append(df)
                trade_list = trade_list + closed_trades
                (res_pnl, ts) = get_pnl_stats( [df], config['capital'], config['marginrate'], 'm')
                res_trade = get_trade_stats( trade_list )
                res = dict( res_pnl.items() + res_trade.items())
                res.update(dict(zip(sim_config['scen_keys'], s)))
                res['asset'] = cont
                if cont not in output['cont']:
                    output['cont'][cont] = {}
                output['cont'][cont][ix] = res
            (res_pnl, ts) = get_pnl_stats( df_list, config['capital'], config['marginrate'], 'm')
            res_trade = get_trade_stats( trade_list )
            res = dict( res_pnl.items() + res_trade.items())
            res.update(dict(zip(sim_config['scen_keys'], s)))
            res['asset'] = '_'.join(assets)
            output['total'][ix] = res
            print 'saving results for asset = %s, scen = %s' % ('_'.join(assets), str(ix))
            all_trades = {}
            for i, tradepos in enumerate(trade_list):
                all_trades[i] = strat.tradepos2dict(tradepos)
            trades = pd.DataFrame.from_dict(all_trades).T
            trades.to_csv(fname1)
            ts.to_csv(fname2)
            fname = file_prefix + 'stats.json'
            try:
                with open(fname, 'w') as ofile:
                    json.dump(output, ofile)
            except:
                continue
        cont_df = pd.DataFrame()
        for idx in range(abs(min(cont_map)), len(contlist[assets[0]]) - max(cont_map)):
            cont = contlist[assets[0]][idx]
            if cont not in output['cont']:
                continue
            res = scen_dict_to_df(output['cont'][cont])
            out_res = res[outcol_list]
            if len(cont_df) == 0:
                cont_df = out_res[:20].copy(deep = True)
            else:
                cont_df = cont_df.append(out_res[:20])
        fname = file_prefix + 'cont_stat.csv'
        cont_df.to_csv(fname)
        res = scen_dict_to_df(output['total'])
        out_res = res[outcol_list]
        if len(summary_df) == 0:
            summary_df = out_res[:20].copy(deep = True)
        else:
            summary_df = summary_df.append(out_res[:20])
        fname = config['file_prefix'] + 'summary.csv'
        summary_df.to_csv(fname)
    return
Exemple #11
0
def simlauncher_min(config_file):
    sim_config = {}
    with open(config_file, 'r') as fp:
        sim_config = json.load(fp)
    bktest_split = sim_config['sim_func'].split('.')
    bktest_module = __import__(bktest_split[0])
    run_sim = getattr(bktest_module, bktest_split[1])
    dir_name = config_file.split('.')[0]
    test_folder = get_bktest_folder()
    file_prefix = test_folder + dir_name + os.path.sep
    if not os.path.exists(file_prefix):
        os.makedirs(file_prefix)
    sim_list = sim_config['products']
    config = {}
    start_date = datetime.datetime.strptime(sim_config['start_date'], '%Y%m%d').date()
    config['start_date'] = start_date
    end_date   = datetime.datetime.strptime(sim_config['end_date'], '%Y%m%d').date()
    config['end_date'] = end_date
    scen_dim = [ len(sim_config[s]) for s in sim_config['scen_keys']]
    outcol_list = ['asset', 'scenario'] + sim_config['scen_keys'] \
                + ['sharp_ratio', 'tot_pnl', 'std_pnl', 'num_days', \
                    'max_drawdown', 'max_dd_period', 'profit_dd_ratio', \
                    'all_profit', 'tot_cost', 'win_ratio', 'num_win', 'num_loss', \
                    'profit_per_win', 'profit_per_loss']
    scenarios = [list(s) for s in np.ndindex(tuple(scen_dim))]
    config.update(sim_config['config'])
    config['pos_class'] = eval(sim_config['pos_class'])
    if 'proc_func' in sim_config:
        config['proc_func'] = eval(sim_config['proc_func'])
    file_prefix = file_prefix + sim_config['sim_name']
    if config['close_daily']:
        file_prefix = file_prefix + 'daily_'
    config['file_prefix'] = file_prefix
    summary_df = pd.DataFrame()
    fname = config['file_prefix'] + 'summary.csv'
    if os.path.isfile(fname):
        summary_df = pd.DataFrame.from_csv(fname)
    for asset in sim_list:
        file_prefix = config['file_prefix'] + '_' + asset + '_'
        fname = file_prefix + 'stats.json'
        output = {}
        if os.path.isfile(fname):
            with open(fname, 'r') as fp:
                output = json.load(fp)
        if len(output.keys()) < len(scenarios):
            if asset in sim_start_dict:
                start_date =  max(sim_start_dict[asset], config['start_date'])
            else:
                start_date = config['start_date']
            if 'offset' in sim_config:
                config['offset'] = sim_config['offset'] * trade_offset_dict[asset]
            else:
                config['offset'] = trade_offset_dict[asset]
            config['marginrate'] = ( sim_margin_dict[asset], sim_margin_dict[asset])
            config['nearby'] = 1
            config['rollrule'] = '-50b'
            config['exit_min'] = 2112
            config['no_trade_set'] = range(300, 301) + range(1500, 1501) + range(2059, 2100)
            if asset in ['cu', 'al', 'zn']:
                config['nearby'] = 3
                config['rollrule'] = '-1b'
            elif asset in ['IF', 'IH', 'IC']:
                config['rollrule'] = '-2b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            elif asset in ['au', 'ag']:
                config['rollrule'] = '-25b'
            elif asset in ['TF', 'T']:
                config['rollrule'] = '-20b'
                config['no_trade_set'] = range(1515, 1520) + range(2110, 2115)
            config['no_trade_set'] = []
            nearby   = config['nearby']
            rollrule = config['rollrule']
            if nearby > 0:
                mdf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
            mdf = cleanup_mindata(mdf, asset)
            if 'need_daily' in sim_config:
                ddf = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'd', need_shift=True)
                config['ddf'] = ddf
            for ix, s in enumerate(scenarios):
                fname1 = file_prefix + str(ix) + '_trades.csv'
                fname2 = file_prefix + str(ix) + '_dailydata.csv'
                if os.path.isfile(fname1) and os.path.isfile(fname2):
                    continue
                for key, seq in zip(sim_config['scen_keys'], s):
                    config[key] = sim_config[key][seq]
                df = mdf.copy(deep = True)
                (res, closed_trades, ts) = run_sim( df, config)
                res.update(dict(zip(sim_config['scen_keys'], s)))
                res['asset'] = asset
                output[ix] = res
                print 'saving results for asset = %s, scen = %s' % (asset, str(ix))
                all_trades = {}
                for i, tradepos in enumerate(closed_trades):
                    all_trades[i] = strat.tradepos2dict(tradepos)
                trades = pd.DataFrame.from_dict(all_trades).T
                trades.to_csv(fname1)
                ts.to_csv(fname2)
                fname = file_prefix + 'stats.json'
                try:
                    with open(fname, 'w') as ofile:
                        json.dump(output, ofile)
                except:
                    continue
        res = pd.DataFrame.from_dict(output, orient = 'index')
        res.index.name = 'scenario'
        res = res.sort(columns = ['sharp_ratio'], ascending=False)
        res = res.reset_index()
        res.set_index(['asset', 'scenario'])
        out_res = res[outcol_list]
        if len(summary_df) == 0:
            summary_df = out_res[:10].copy(deep = True)
        else:
            summary_df = summary_df.append(out_res[:10])
        fname = config['file_prefix'] + 'summary.csv'
        summary_df.to_csv(fname)
    return
    rollrule = config['rollrule']
    file_prefix = config['file_prefix'] + '_' + asset + '_'
	df = misc.nearby(asset, nearby, start_date, end_date, rollrule, 'm', need_shift=True)
	
    output = {}
    for ix, freq in enumerate(freqs):
		xdf = dh.conv_ohlc_freq(df, freq):
        for iy, win in enumerate(windows):
            idx = ix*10+iy
            config['win'] = win
            (res, closed_trades, ts) = aberration_sim( xdf, mdf, , config)
            output[idx] = res
            print 'saving results for scen = %s' % str(idx)
            all_trades = {}
            for i, tradepos in enumerate(closed_trades):
                all_trades[i] = strat.tradepos2dict(tradepos)
            fname = file_prefix + str(idx) + '_trades.csv'
            trades = pd.DataFrame.from_dict(all_trades).T  
            trades.to_csv(fname)
            fname = file_prefix + str(idx) + '_dailydata.csv'
            ts.to_csv(fname)
    fname = file_prefix + 'stats.csv'
    res = pd.DataFrame.from_dict(output)
    res.to_csv(fname)
    return 

def aberration_sim( xdf, mdf, config):
    marginrate = config['marginrate']
    offset = config['offset']
	win = config['win']
    start_equity = config['capital']