Exemple #1
0
def q_p(**kwargs):

    filename = os.path.join(plot_path, "q_p.pdf")
    fig,axes = plt.subplots(2,4,figsize=(14,7.5),
                            sharex=True, sharey=True)

    bins = np.linspace(0.,10,40)
    nparticles = 5000
    for kk,_m in enumerate(range(6,9+1)):
        mass = "2.5e{}".format(_m)
        m = float(mass)
        print(mass)

        sgr = SgrSimulation(sgr_path.format(_m), snapfile)
        p = sgr.particles(n=nparticles, expr="(tub!=0)")#" & (tub<400)")
        tub = p.tub
        s = sgr.satellite()

        potential = LawMajewski2010()

        X = np.vstack((s._X[...,:3], p._X[...,:3].copy()))
        V = np.vstack((s._X[...,3:], p._X[...,3:].copy()))
        integrator = LeapfrogIntegrator(potential._acceleration_at,
                                        np.array(X), np.array(V),
                                        args=(X.shape[0], np.zeros_like(X)))
        ts, rs, vs = integrator.run(t1=sgr.t1, t2=sgr.t2, dt=-1.)

        s_orbit = np.vstack((rs[:,0][:,np.newaxis].T, vs[:,0][:,np.newaxis].T)).T
        p_orbits = np.vstack((rs[:,1:].T, vs[:,1:].T)).T
        t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub])

        p_x = np.array([p_orbits[jj,ii] for ii,jj in enumerate(t_idx)])
        s_x = np.array([s_orbit[jj,0] for jj in t_idx])

        #############################################
        # determine tail_bit
        diff = p_x-s_x
        norm_r = s_x[:,:3] / np.sqrt(np.sum(s_x[:,:3]**2, axis=-1))[:,np.newaxis]
        norm_diff_r = diff[:,:3] / np.sqrt(np.sum(diff[:,:3]**2, axis=-1))[:,np.newaxis]
        dot_prod_r = np.sum(norm_diff_r*norm_r, axis=-1)
        tail_bit = (dot_prod_r > 0.).astype(int)*2 - 1
        #############################################

        r_tide = potential._tidal_radius(m, s_orbit[...,:3])#*0.69336
        s_R_orbit = np.sqrt(np.sum(s_orbit[...,:3]**2, axis=-1))
        a_pm = (s_R_orbit + r_tide*tail_bit) / s_R_orbit
        q = np.sqrt(np.sum((p_x[:,:3] - s_x[:,:3])**2,axis=-1))

        f = r_tide / s_R_orbit
        s_V = np.sqrt(np.sum(s_orbit[...,3:]**2, axis=-1))
        vdisp = s_V * f / 1.4
        p = np.sqrt(np.sum((p_x[:,3:] - s_x[...,3:])**2,axis=-1))

        fig,axes = plt.subplots(2,1,figsize=(10,6),sharex=True)

        axes[0].plot(tub, q, marker='.', alpha=0.5, color='#666666')
        axes[0].plot(ts, r_tide*1.4, linewidth=2., alpha=0.8, color='k',
                     linestyle='-', marker=None)
        axes[0].set_ylim(0., max(r_tide)*4)

        axes[1].plot(tub, (p*u.kpc/u.Myr).to(u.km/u.s).value,
                     marker='.', alpha=0.5, color='#666666')
        axes[1].plot(ts, (vdisp*u.kpc/u.Myr).to(u.km/u.s).value, color='k',
                     linewidth=2., alpha=0.75, linestyle='-', marker=None)

        M_enc = potential._enclosed_mass(s_R_orbit)
        #delta_E = 4/3.*G.decompose(usys).value**2*m*(M_enc / s_V)**2*r_tide**2/s_R_orbit**4
        delta_v2 = 4/3.*G.decompose(usys).value**2*(M_enc / s_V)**2*\
                        np.mean(r_tide**2)/s_R_orbit**4
        delta_v = (np.sqrt(2*delta_v2)*u.kpc/u.Myr).to(u.km/u.s).value

        axes[1].plot(ts, delta_v, linewidth=2., color='#2166AC',
                     alpha=0.75, linestyle='--', marker=None)

        axes[1].set_ylim(0., max((vdisp*u.kpc/u.Myr).to(u.km/u.s).value)*4)

        axes[0].set_xlim(min(ts), max(ts))

        fig.savefig(os.path.join(plot_path, "q_p_{}.png".format(mass)),
                    transparent=True)
Exemple #2
0
def Lpts():
    np.random.seed(42)

    potential = LawMajewski2010()
    filename = os.path.join(plot_path, "Lpts_r.{}".format(ext))
    filename2 = os.path.join(plot_path, "Lpts_v.{}".format(ext))

    fig,axes = plt.subplots(2,4,figsize=grid_figsize,
                            sharex=True, sharey=True)
    fig2,axes2 = plt.subplots(2,4,figsize=grid_figsize,
                              sharex=True, sharey=True)

    bins = np.linspace(-3,3,50)
    nparticles = 2000
    for k,_m in enumerate(range(6,9+1)):
        mass = "2.5e{}".format(_m)
        m = float(mass)
        print(mass)

        sgr = SgrSimulation(sgr_path.format(_m),snapfile)
        p = sgr.particles(n=nparticles, expr=expr)
        s = sgr.satellite()
        dt = -1.

        coord, r_tide, v_disp = particles_x1x2x3(p, s,
                                                 sgr.potential,
                                                 sgr.t1, sgr.t2, dt,
                                                 at_tub=False)
        (x1,x2,x3,vx1,vx2,vx3) = coord
        ts = np.arange(sgr.t1,sgr.t2+dt,dt)
        t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub])

        _tcross = r_tide / np.sqrt(G.decompose(usys).value*m/r_tide)
        for ii,jj in enumerate(t_idx):
            #tcross = r_tide[jj,0] / _v[jj,ii]
            tcross = _tcross[jj]
            bnd = int(tcross / 2)

            ix1,ix2 = jj-bnd, jj+bnd
            if ix1 < 0: ix1 = 0
            if ix2 > max(sgr.t1,sgr.t2): ix2 = -1

            axes[0,k].set_rasterization_zorder(1)
            axes[0,k].plot(x1[jj-bnd:jj+bnd,ii]/r_tide[jj-bnd:jj+bnd,0],
                           x2[jj-bnd:jj+bnd,ii]/r_tide[jj-bnd:jj+bnd,0],
                           linestyle='-', alpha=0.1, marker=None, color='#555555',
                           zorder=-1)

            axes[1,k].set_rasterization_zorder(1)
            axes[1,k].plot(x1[jj-bnd:jj+bnd,ii]/r_tide[jj-bnd:jj+bnd,0],
                           x3[jj-bnd:jj+bnd,ii]/r_tide[jj-bnd:jj+bnd,0],
                           linestyle='-', alpha=0.1, marker=None, color='#555555',
                           zorder=-1)

        circ = Circle((0,0), radius=1., fill=False, alpha=0.75,
                      edgecolor='k', linestyle='solid')
        axes[0,k].add_patch(circ)
        circ = Circle((0,0), radius=1., fill=False, alpha=0.75,
                     edgecolor='k', linestyle='solid')
        axes[1,k].add_patch(circ)

        axes[0,k].axhline(0., color='k', alpha=0.75)
        axes[1,k].axhline(0., color='k', alpha=0.75)

        axes[0,k].set_xlim(-5,5)
        axes[0,k].set_ylim(axes[0,k].get_xlim())

        axes[1,k].set_xlabel(r"$x_1/r_{\rm tide}$")

        if k == 0:
            axes[0,k].set_ylabel(r"$x_2/r_{\rm tide}$")
            axes[1,k].set_ylabel(r"$x_3/r_{\rm tide}$")

        _tcross = r_tide / np.sqrt(G.decompose(usys).value*m/r_tide)
        for ii,jj in enumerate(t_idx):
            #tcross = r_tide[jj,0] / _v[jj,ii]
            tcross = _tcross[jj]
            bnd = int(tcross / 2)

            ix1,ix2 = jj-bnd, jj+bnd
            if ix1 < 0: ix1 = 0
            if ix2 > max(sgr.t1,sgr.t2): ix2 = -1

            axes2[0,k].set_rasterization_zorder(1)
            axes2[0,k].plot(vx1[jj-bnd:jj+bnd,ii]/v_disp[jj-bnd:jj+bnd,0],
                            vx2[jj-bnd:jj+bnd,ii]/v_disp[jj-bnd:jj+bnd,0],
                            linestyle='-', alpha=0.1, marker=None, color='#555555',
                            zorder=-1)

            axes2[1,k].set_rasterization_zorder(1)
            axes2[1,k].plot(vx1[jj-bnd:jj+bnd,ii]/v_disp[jj-bnd:jj+bnd,0],
                            vx3[jj-bnd:jj+bnd,ii]/v_disp[jj-bnd:jj+bnd,0],
                            linestyle='-', alpha=0.1, marker=None, color='#555555',
                            zorder=-1)

        circ = Circle((0,0), radius=1., fill=False, alpha=0.75,
                      edgecolor='k', linestyle='solid')
        axes2[0,k].add_patch(circ)
        circ = Circle((0,0), radius=1., fill=False, alpha=0.75,
                      edgecolor='k', linestyle='solid')
        axes2[1,k].add_patch(circ)

        axes2[0,k].axhline(0., color='k', alpha=0.75)
        axes2[1,k].axhline(0., color='k', alpha=0.75)

        axes2[1,k].set_xlim(-5,5)
        axes2[1,k].set_ylim(axes2[1,k].get_xlim())

        axes2[1,k].set_xlabel(r"$v_{x_1}/\sigma_v$")

        if k == 0:
            axes2[0,k].set_ylabel(r"$v_{x_2}/\sigma_v$")
            axes2[1,k].set_ylabel(r"$v_{x_3}/\sigma_v$")

        axes[0,k].text(0.5, 1.05, r"$2.5\times10^{}M_\odot$".format(_m),
                       horizontalalignment='center',
                       fontsize=24,
                       transform=axes[0,k].transAxes)

        axes2[0,k].text(0.5, 1.05, r"$2.5\times10^{}M_\odot$".format(_m),
                        horizontalalignment='center',
                        fontsize=24,
                        transform=axes2[0,k].transAxes)

    fig.tight_layout()
    fig.subplots_adjust(top=0.92, hspace=0.025, wspace=0.1)
    fig.savefig(filename)

    fig2.tight_layout()
    fig2.subplots_adjust(top=0.92, hspace=0.025, wspace=0.1)
    fig2.savefig(filename2)
Exemple #3
0
def total_rv():

    filenamer = os.path.join(plot_path, "rel_r.png")
    filenamev = os.path.join(plot_path, "rel_v.png")

    figr,axesr = plt.subplots(4,1,figsize=(10,14),
                              sharex=True)
    figv,axesv = plt.subplots(4,1,figsize=(10,14),
                              sharex=True)

    nparticles = 2000
    for k,_m in enumerate(range(6,9+1)):
        mass = "2.5e{}".format(_m)
        m = float(mass)
        print(mass)

        sgr = SgrSimulation(sgr_path.format(_m),snapfile)
        p = sgr.particles(n=nparticles, expr=expr)
        s = sgr.satellite()

        X = np.vstack((s._X[...,:3], p._X[...,:3].copy()))
        V = np.vstack((s._X[...,3:], p._X[...,3:].copy()))
        integrator = LeapfrogIntegrator(sgr.potential._acceleration_at,
                                        np.array(X), np.array(V),
                                        args=(X.shape[0], np.zeros_like(X)))
        ts, rs, vs = integrator.run(t1=sgr.t1, t2=sgr.t2, dt=-1.)

        s_orbit = np.vstack((rs[:,0][:,np.newaxis].T, vs[:,0][:,np.newaxis].T)).T
        p_orbits = np.vstack((rs[:,1:].T, vs[:,1:].T)).T
        t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub])

        m_t = (-s.mdot*ts + s.m0)[:,np.newaxis]
        s_R = np.sqrt(np.sum(s_orbit[...,:3]**2, axis=-1))
        s_V = np.sqrt(np.sum(s_orbit[...,3:]**2, axis=-1))
        r_tide = sgr.potential._tidal_radius(m_t, s_orbit[...,:3])
        v_disp = s_V * r_tide / s_R

        # cartesian basis to project into
        x_hat = s_orbit[...,:3] / np.sqrt(np.sum(s_orbit[...,:3]**2, axis=-1))[...,np.newaxis]
        _y_hat = s_orbit[...,3:] / np.sqrt(np.sum(s_orbit[...,3:]**2, axis=-1))[...,np.newaxis]
        z_hat = np.cross(x_hat, _y_hat)
        y_hat = -np.cross(x_hat, z_hat)

        # translate to satellite position
        rel_orbits = p_orbits - s_orbit
        rel_pos = rel_orbits[...,:3]
        rel_vel = rel_orbits[...,3:]

        # project onto each
        X = np.sum(rel_pos * x_hat, axis=-1)
        Y = np.sum(rel_pos * y_hat, axis=-1)
        Z = np.sum(rel_pos * z_hat, axis=-1)
        RR = np.sqrt(X**2 + Y**2 + Z**2)

        VX = np.sum(rel_vel * x_hat, axis=-1)
        VY = np.sum(rel_vel * y_hat, axis=-1)
        VZ = np.sum(rel_vel * z_hat, axis=-1)
        VV = (np.sqrt(VX**2 + VY**2 + VZ**2)*u.kpc/u.Myr).to(u.km/u.s).value
        v_disp = (v_disp*u.kpc/u.Myr).to(u.km/u.s).value

        _tcross = r_tide / np.sqrt(G.decompose(usys).value*m/r_tide)
        for ii,jj in enumerate(t_idx):
            #tcross = r_tide[jj,0] / _v[jj,ii]
            tcross = _tcross[jj]
            bnd = int(tcross / 2)

            ix1,ix2 = jj-bnd, jj+bnd
            if ix1 < 0: ix1 = 0
            if ix2 > max(sgr.t1,sgr.t2): ix2 = -1
            axesr[k].plot(ts[ix1:ix2],
                          RR[ix1:ix2,ii],
                          linestyle='-', alpha=0.1, marker=None, color='#555555', zorder=-1)

            axesv[k].plot(ts[ix1:ix2],
                          VV[ix1:ix2,ii],
                          linestyle='-', alpha=0.1, marker=None, color='#555555', zorder=-1)

        axesr[k].plot(ts, r_tide*2., marker=None)

        axesr[k].set_xlim(ts.min(), ts.max())
        axesv[k].set_xlim(ts.min(), ts.max())

        axesr[k].set_ylim(0,max(r_tide)*7)
        axesv[k].set_ylim(0,max(v_disp)*7)

        # axes[1,k].set_xlabel(r"$x_1$")

        # if k == 0:
        #     axes[0,k].set_ylabel(r"$x_2$")
        #     axes[1,k].set_ylabel(r"$x_3$")

        axesr[k].text(3000, max(r_tide)*5, r"$2.5\times10^{}M_\odot$".format(_m))
        axesv[k].text(3000, max(v_disp)*5, r"$2.5\times10^{}M_\odot$".format(_m))

    axesr[-1].set_xlabel("time [Myr]")
    axesv[-1].set_xlabel("time [Myr]")

    figr.suptitle("Relative distance", fontsize=26)
    figr.tight_layout()
    figr.subplots_adjust(top=0.92, hspace=0.025, wspace=0.1)
    figr.savefig(filenamer)

    figv.suptitle("Relative velocity", fontsize=26)
    figv.tight_layout()
    figv.subplots_adjust(top=0.92, hspace=0.025, wspace=0.1)
    figv.savefig(filenamev)
Exemple #4
0
def q_p(**kwargs):

    filename = os.path.join(plot_path, "q_p.pdf")
    fig, axes = plt.subplots(2, 4, figsize=(14, 7.5), sharex=True, sharey=True)

    bins = np.linspace(0., 10, 40)
    nparticles = 5000
    for kk, _m in enumerate(range(6, 9 + 1)):
        mass = "2.5e{}".format(_m)
        m = float(mass)
        print(mass)

        sgr = SgrSimulation(sgr_path.format(_m), snapfile)
        p = sgr.particles(n=nparticles, expr="(tub!=0)")  #" & (tub<400)")
        tub = p.tub
        s = sgr.satellite()

        potential = LawMajewski2010()

        X = np.vstack((s._X[..., :3], p._X[..., :3].copy()))
        V = np.vstack((s._X[..., 3:], p._X[..., 3:].copy()))
        integrator = LeapfrogIntegrator(potential._acceleration_at,
                                        np.array(X),
                                        np.array(V),
                                        args=(X.shape[0], np.zeros_like(X)))
        ts, rs, vs = integrator.run(t1=sgr.t1, t2=sgr.t2, dt=-1.)

        s_orbit = np.vstack(
            (rs[:, 0][:, np.newaxis].T, vs[:, 0][:, np.newaxis].T)).T
        p_orbits = np.vstack((rs[:, 1:].T, vs[:, 1:].T)).T
        t_idx = np.array([np.argmin(np.fabs(ts - t)) for t in p.tub])

        p_x = np.array([p_orbits[jj, ii] for ii, jj in enumerate(t_idx)])
        s_x = np.array([s_orbit[jj, 0] for jj in t_idx])

        #############################################
        # determine tail_bit
        diff = p_x - s_x
        norm_r = s_x[:, :3] / np.sqrt(np.sum(s_x[:, :3]**2,
                                             axis=-1))[:, np.newaxis]
        norm_diff_r = diff[:, :3] / np.sqrt(np.sum(diff[:, :3]**2,
                                                   axis=-1))[:, np.newaxis]
        dot_prod_r = np.sum(norm_diff_r * norm_r, axis=-1)
        tail_bit = (dot_prod_r > 0.).astype(int) * 2 - 1
        #############################################

        r_tide = potential._tidal_radius(m, s_orbit[..., :3])  #*0.69336
        s_R_orbit = np.sqrt(np.sum(s_orbit[..., :3]**2, axis=-1))
        a_pm = (s_R_orbit + r_tide * tail_bit) / s_R_orbit
        q = np.sqrt(np.sum((p_x[:, :3] - s_x[:, :3])**2, axis=-1))

        f = r_tide / s_R_orbit
        s_V = np.sqrt(np.sum(s_orbit[..., 3:]**2, axis=-1))
        vdisp = s_V * f / 1.4
        p = np.sqrt(np.sum((p_x[:, 3:] - s_x[..., 3:])**2, axis=-1))

        fig, axes = plt.subplots(2, 1, figsize=(10, 6), sharex=True)

        axes[0].plot(tub, q, marker='.', alpha=0.5, color='#666666')
        axes[0].plot(ts,
                     r_tide * 1.4,
                     linewidth=2.,
                     alpha=0.8,
                     color='k',
                     linestyle='-',
                     marker=None)
        axes[0].set_ylim(0., max(r_tide) * 4)

        axes[1].plot(tub, (p * u.kpc / u.Myr).to(u.km / u.s).value,
                     marker='.',
                     alpha=0.5,
                     color='#666666')
        axes[1].plot(ts, (vdisp * u.kpc / u.Myr).to(u.km / u.s).value,
                     color='k',
                     linewidth=2.,
                     alpha=0.75,
                     linestyle='-',
                     marker=None)

        M_enc = potential._enclosed_mass(s_R_orbit)
        #delta_E = 4/3.*G.decompose(usys).value**2*m*(M_enc / s_V)**2*r_tide**2/s_R_orbit**4
        delta_v2 = 4/3.*G.decompose(usys).value**2*(M_enc / s_V)**2*\
                        np.mean(r_tide**2)/s_R_orbit**4
        delta_v = (np.sqrt(2 * delta_v2) * u.kpc / u.Myr).to(u.km / u.s).value

        axes[1].plot(ts,
                     delta_v,
                     linewidth=2.,
                     color='#2166AC',
                     alpha=0.75,
                     linestyle='--',
                     marker=None)

        axes[1].set_ylim(0.,
                         max((vdisp * u.kpc / u.Myr).to(u.km / u.s).value) * 4)

        axes[0].set_xlim(min(ts), max(ts))

        fig.savefig(os.path.join(plot_path, "q_p_{}.png".format(mass)),
                    transparent=True)