Exemple #1
0
def create_problem():
    """
    Creates a blocksworld STRIPStream problem.

    :return: a :class:`.STRIPStreamProblem`
    """

    # Data types
    BLOCK = Type()

    # Fluent predicates
    Clear = Pred(BLOCK)
    OnTable = Pred(BLOCK)
    ArmEmpty = Pred()
    Holding = Pred(BLOCK)
    On = Pred(BLOCK, BLOCK)

    # Free parameters
    B1, B2 = Param(BLOCK), Param(BLOCK)

    rename_easy(locals())

    actions = [
        Action(name='pickup', parameters=[B1],
               condition=And(Clear(B1), OnTable(B1), ArmEmpty()),
               effect=And(Holding(B1), Not(Clear(B1)), Not(OnTable(B1)), Not(ArmEmpty()))),

        Action(name='putdown', parameters=[B1],
               condition=Holding(B1),
               effect=And(Clear(B1), OnTable(B1), ArmEmpty(), Not(Holding(B1)))),

        Action(name='stack', parameters=[B1, B2],
               condition=And(Clear(B2), Holding(B1)),
               effect=And(Clear(B1), On(B1, B2), ArmEmpty(), Not(Clear(B2)), Not(Holding(B1)))),

        Action(name='unstack', parameters=[B1, B2],
               condition=And(Clear(B1), On(B1, B2), ArmEmpty()),
               effect=And(Clear(B2), Holding(B1), Not(Clear(B1)), Not(On(B1, B2)), Not(ArmEmpty()))),
    ]

    axioms = []
    cond_streams = []
    constants = []

    initial_atoms = [
        OnTable('A'),
        OnTable('B'),
        OnTable('C'),
        Clear('A'),
        Clear('B'),
        Clear('C'),
        ArmEmpty(),
    ]

    goal_literals = [On('A', 'B'), On('B', 'C')]

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)
Exemple #2
0
 def __init__(self):
     block, pose, config = P('o', BLOCK), P('p', POSE), P('q', CONFIG)
     STRIPSAction.__init__(self, self.__class__.__name__,
                           [block, pose, config], [
                               AtPose(block, pose),
                               HandEmpty(),
                               IsIK(pose, config),
                           ], [
                               Holding(block),
                               Not(HandEmpty()),
                               Not(AtPose(block, pose)),
                           ])
     Refinable.__init__(self, [H0Pick1(block, pose, config)])
Exemple #3
0
 def __init__(self,
              block=P('o', BLOCK),
              pose=P('p', POSE),
              config=P('q', CONFIG)):
     #def __init__(self, block, pose, config):
     super(H0Pick1, self).__init__(self.__class__.__name__,
                                   [block, pose, config], [
                                       AtPose(block, pose),
                                       HandEmpty(),
                                       IsIK(pose, config),
                                       AtConfig(config),
                                   ], [
                                       Holding(block),
                                       Not(HandEmpty()),
                                       Not(AtPose(block, pose)),
                                   ])
Exemple #4
0
 def __init__(self):
     params = (P('o', BLOCK), P('p', POSE), P('q', CONFIG))
     block, pose, config = params
     conditions = [
         AtPose(block, pose),
         HandEmpty(),
         IsIK(pose, config),
         #IsContained(block, pose, ENV_REGION),
     ]
     if USE_BASE:
         conditions.append(AtConfig(config))
     super(Pick, self).__init__(self.__class__.__name__, params, conditions,
                                [
                                    Holding(block),
                                    Not(HandEmpty()),
                                    Not(AtPose(block, pose)),
                                ])
Exemple #5
0
 def __init__(self):
     super(Land, self).__init__(self.__class__.__name__, [], [
         Flying(),
         AtState(State((0, 0))),
     ], [
         Landed(),
         Not(Flying()),
     ])
def get_effects(var_map, effect_vars, assign_map):
    effects = []
    for var in effect_vars:
        name, args = var_name(var), make_var_constants(var, var_map)
        pre_args = [assign_map.get(p, p) for p in args + [X[var]]]
        eff_args = [assign_map.get(p, p) for p in args + [nX[var]]]
        predicate = var_map[name].predicate
        effects += [predicate(*eff_args), Not(predicate(*pre_args))]
    return effects
Exemple #7
0
def create_problem(time_step=.5, fuel_rate=5, start_fuel=10, goal_p=10):
    """
  Creates the Tsiolkovsky rocket problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    STATE, RATE, MASS, TIME = Type(), Type(), Type(), Type()
    HEIGHT = Type()

    # Fluent predicates
    AtState = Pred(STATE)

    # Derived predicates
    Above = Pred(HEIGHT)

    # Static predicates
    IsBurst = Pred(STATE, RATE, TIME, STATE)
    IsAbove = Pred(STATE, HEIGHT)

    # Free parameters
    X1, X2 = Param(STATE), Param(STATE)
    Q, T = Param(RATE), Param(TIME)
    H = Param(HEIGHT)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='burst',
               parameters=[X1, Q, T, X2],
               condition=And(AtState(X1), IsBurst(X1, Q, T, X2)),
               effect=And(AtState(X2), Not(AtState(X1)))),
    ]

    axioms = [
        Axiom(effect=Above(H),
              condition=Exists([X1], And(AtState(X1), IsAbove(X1, H)))),
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        GeneratorStream(inputs=[X1, Q, T],
                        outputs=[X2],
                        conditions=[],
                        effects=[IsBurst(X1, Q, T, X2)],
                        generator=forward_burst),
        TestStream(inputs=[X1, H],
                   conditions=[],
                   effects=[IsAbove(X1, H)],
                   test=lambda (p, v, m), h: p >= h,
                   eager=True),
    ]
Exemple #8
0
 def __init__(self):
     params = (P('q1', CONFIG), P('q2', CONFIG))
     q1, q2 = params
     super(Move, self).__init__(self.__class__.__name__, params, [
         AtConfig(q1),
     ], [
         AtConfig(q2),
         Not(AtConfig(q1)),
     ])
Exemple #9
0
 def __init__(self):
     obj, p, prior = Param(OBJ), Param(POSE), Param(BELIEF)
     post = 1
     super(PerfectLook, self).__init__(
         self.__class__.__name__,
         [obj, p, prior],
         And(
             #At(obj, p),
             BAt(obj, p, prior)),
         And(BAt(obj, p, 1), Not(BAt(obj, p, prior))))
Exemple #10
0
def create_abstract_problem(state, goal):
    # Goal serialization is basically like this
    # Necessary and sufficient?

    tables, initial_poses, initial_config, holding = state

    # TODO: connect this to goals on the actual states
    # The quantification of poses and grasps is independent
    # Conditions are derived or atoms
    actions = [
        Action(
            name='pick',
            parameters=[B, S],
            condition=And(On(B, S), HandEmpty()),  #, AtConf(Q)),
            #condition=And(On(B, S), HandEmpty(), Not(Holding(B))),  # , AtConf(Q)),
            effect=And(Holding(B), Not(On(B, S)), Not(HandEmpty()))),
        Action(
            name='place',
            parameters=[B, S],
            condition=And(Holding(B)),  #, AtConf(Q)),
            effect=And(On(B, S), HandEmpty(), Not(Holding(B)))),
        #Action(name='move', parameters=[S1, Q2],
        #  condition=AtConf(Q),
        #  effect=And(AtConf(Q2), Not(AtConf(Q)))),
    ]

    axioms = []
    cond_streams = []

    initial_atoms = [
        #AtConf(initial_config),
        HandEmpty()
    ] + [On(block, pose.sur) for block, pose in initial_poses.items()]

    goal_literals = [On(b, s) for b, s in goal.on.items()]
    if goal.holding is not None:
        goal_literals.append(Holding(goal.holding))

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams)

    return problem
Exemple #11
0
 def __init__(self):
     params = (P('x', STATE), P('p', POSITION), P('s', SATELLITE))
     x, p, s = params
     super(Deploy, self).__init__(self.__class__.__name__, params, [
         Carrying(s),
         AtState(x),
         ArePair(x, p),
     ], [
         AtOrbit(s, p),
         Not(Carrying(s)),
     ])
Exemple #12
0
 def __init__(self):
     params = (P('x1', STATE), P('t', TIME), P('x2', STATE))
     x1, t, x2 = params
     super(Glide, self).__init__(self.__class__.__name__, params, [
         AtState(x1),
         IsGlide(x1, t, x2),
         Flying(),
     ], [
         AtState(x2),
         Not(AtState(x1)),
     ])
Exemple #13
0
 def __init__(self, p_obs_t):
     obj, p, prior, post = Param(OBJ), Param(POSE), Param(BELIEF), Param(
         BELIEF)
     super(BackwardLook, self).__init__(
         self.__class__.__name__,
         [obj, p, prior, post],
         And(
             #At(obj, p),
             BAt(obj, p, prior),
             #BAtAbove(obj, p, prior), # Problem where we want to delete the old belief, but we need to include the reference belief
             IsPossible(prior, post)),
         And(BAt(obj, p, post), Not(BAt(obj, p, prior))))
 def __init__(self, oracle):
     params = (P('b', BLOCK), P('p', POSE), P('g', GRASP), P('q', CONFIG),
               P('t', TRAJ))
     b, p, g, q, t = params
     conditions = [
         AtPose(b, p),
         HandEmpty(),
         IsPose(b, p),  # NOTE - might not need these
         IsGrasp(b, g),
         IsIK(b, p, g, q, t),
     ]
     if BASE:
         conditions.append(AtConfig(q))
     conditions += collision_conditions(oracle, b, t)
     effects = [
         #HasGrasp(b, g),
         Holding(b),
         HasGrasp(g),
         Not(HandEmpty()),
         Not(AtPose(b, p)),
     ]
     super(Pick, self).__init__(self.__class__.__name__, params, conditions,
                                effects)
 def __init__(self, oracle):
     params = (P('q1', CONFIG), P('q2', CONFIG))
     q1, q2 = params
     super(Move, self).__init__(
         self.__class__.__name__,
         params,
         [
             AtConfig(q1),
         ],
         [
             AtConfig(q2),
             Not(AtConfig(q1)),
             #Cost(???), # TODO - include cost lowerbound first
             #Cost(???), # NOTE - PDDL uses the last cost specified
         ])
Exemple #16
0
 def __init__(self, min_safe_p=.95):
     obj, p1, p2, b = Param(OBJ), Param(POSE), Param(POSE), Param(BELIEF)
     Action.__init__(
         self,
         self.__class__.__name__,
         [obj, p1, p2, b],
         And(
             #At(obj, p1),
             BAt(obj, p1, b),
             BAtAbove(obj, p1, min_safe_p)),
         And(
             #At(obj, p2),
             BAt(obj, p2, b),
             #Not(At(obj, p1)),
             Not(BAt(obj, p1, b))),
         cost=1)
Exemple #17
0
 def __init__(self, min_safe_p=.95):
     obj, d1, d2 = Param(OBJ), Param(DIST), Param(DIST)
     Action.__init__(
         self,
         self.__class__.__name__,
         [obj, d],
         And(
             BClean(obj, d1),
             IsClean(d1, d2),
             #BAtAbove(obj, p1, min_safe_p)
         ),
         And(
             BClean(obj, d2),
             #Not(At(obj, p1)),
             Not(BClean(obj, d1))),
         cost=1)
Exemple #18
0
 def __init__(self):
     params = (P('x1',
                 STATE), P('a', ACCELERATION), P('t', TIME), P('x2', STATE))
     x1, a, t, x2 = params
     super(Burst, self).__init__(
         self.__class__.__name__,
         params,
         [
             AtState(x1),
             IsBurst(x1, a, t, x2),
             Flying(),
         ],
         [
             #Cost(), # Delta fuel
             AtState(x2),
             Not(AtState(x1)),
         ])
 def __init__(self, oracle):
     params = (P('q1', CONF), P('q2', CONF))
     q1, q2 = params
     super(Move, self).__init__(
         self.__class__.__name__,
         params,
         [
             AtConfig(q1),
             #MoveCost(q1, q2),
             #Initialize(MoveCost(q1, q2)), # TODO - should I define this here?
             IsCollisionFree(q1, q2),
         ],
         [
             AtConfig(q2),
             Not(AtConfig(q1)),
             Cost(MoveCost(q1, q2)),
         ])
Exemple #20
0
 def __init__(self, blocks):
     params = (P('o', BLOCK), P('p', POSE), P('q', CONFIG))
     block, pose, config = params
     conditions = [
         Holding(block),
         IsIK(pose, config),  # IsPose(p), IsConfig(q),
     ]
     if COLLISIONS:
         conditions += [Safe(other, pose) for other in blocks
                        ]  # TODO - always self safe using equality
     if BASE:
         conditions.append(AtConfig(config))
     super(Place, self).__init__(self.__class__.__name__, params,
                                 conditions, [
                                     AtPose(block, pose),
                                     HandEmpty(),
                                     Not(Holding(block)),
                                 ])
Exemple #21
0
    def __init__(self, p_obs_t, p_obs_f=None, log_cost=False):
        #self.p_obs_t = p_obs_t
        #if p_obs_f is None: self.p_obs_f = 1 - p_obs_t
        #self.log_cost = log_cost
        cost = prob_cost(
            p_obs_t, log_cost=log_cost)  # Conditions on successful observation
        cost = None

        obj, p, prior, post = Param(OBJ), Param(POSE), Param(BELIEF), Param(
            BELIEF)
        super(Look, self).__init__(
            self.__class__.__name__,
            [obj, p, prior, post],
            And(
                #At(obj, p),
                BAt(obj, p, prior),
                IsUpdate(prior, post)),
            And(BAt(obj, p, post), Not(BAt(obj, p, prior))),
            cost)
Exemple #22
0
O, P, G = Param(OBJ), Param(POSE), Param(GRASP)
O2, P2 = Param(OBJ), Param(POSE)
Q, Q2 = Param(CONF), Param(CONF)
T = Param(TRAJ)

rename_easy(locals())

####################

actions = [
  Action(name='pick', parameters=[O, P, G, Q, T],
    condition=And(PoseEq(O, P), HandEmpty(), ConfEq(Q), GraspMotion(P, G, Q, T),
                  ForAll([O2], Or(Equal(O, O2), SafeTraj(O2, T)))),
                  #ForAll([O2], Or(Equal(O, O2), And(SafePose(O2, P), SafeGTraj(O2, GT))))),
    effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),

  Action(name='place', parameters=[O, P, G, Q, T],
    condition=And(GraspEq(O, G), ConfEq(Q), GraspMotion(P, G, Q, T),
                  ForAll([O2], Or(Equal(O, O2), And(SafePose(O2, P), SafeTraj(O2, T))))),
    effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),

  Action(name='move', parameters=[Q, Q2, T],
    condition=And(ConfEq(Q), HandEmpty(), FreeMotion(Q, Q2, T),
                  ForAll([O2], SafeTraj(O2, T))),
    effect=And(ConfEq(Q2), Not(ConfEq(Q)))),

  Action(name='move_holding', parameters=[Q, Q2, T, O, G],
    condition=And(ConfEq(Q), GraspEq(O, G), HoldingMotion(Q, Q2, G, T),
                  ForAll([O2], Or(Equal(O, O2), SafeTraj(O2, T)))),
    effect=And(ConfEq(Q2), Not(ConfEq(Q)))),
Exemple #23
0
def compile_problem(tamp_problem):
    """
    Constructs a STRIPStream problem for the countable TMP problem.

    :param tamp_problem: a :class:`.TMPProblem`
    :return: a :class:`.STRIPStreamProblem`
    """

    B1, B2 = Param(BLOCK), Param(BLOCK)
    P1, P2 = Param(POSE), Param(POSE)
    Q1, Q2 = Param(CONF), Param(CONF)

    actions = [
        Action(name='pick',
               parameters=[B1, P1, Q1],
               condition=And(AtPose(B1, P1), HandEmpty(), AtConf(Q1),
                             LegalKin(P1, Q1)),
               effect=And(Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty()))),
        Action(name='place',
               parameters=[B1, P1, Q1],
               condition=And(Holding(B1), AtConf(Q1), LegalKin(P1, Q1),
                             ForAll([B2], Or(Equal(B1, B2), Safe(B2, P1)))),
               effect=And(AtPose(B1, P1), HandEmpty(), Not(Holding(B1)))),
        Action(name='move',
               parameters=[Q1, Q2],
               condition=AtConf(Q1),
               effect=And(AtConf(Q2), Not(AtConf(Q1)))),
    ]

    axioms = [
        Axiom(effect=Safe(B2, P1),
              condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(P1,
                                                                       P2)))),
    ]

    cond_streams = [
        EasyGenStream(inputs=[],
                      outputs=[P1],
                      conditions=[],
                      effects=[],
                      generator=lambda: irange(0, NUM_POSES)),
        EasyGenStream(inputs=[P1],
                      outputs=[Q1],
                      conditions=[],
                      effects=[LegalKin(P1, Q1)],
                      generator=lambda p: iter([p])),
        EasyTestStream(inputs=[P1, P2],
                       conditions=[],
                       effects=[CollisionFree(P1, P2)],
                       test=lambda p1, p2: p1 != p2,
                       eager=EAGER_TESTS),
    ]

    constants = []

    initial_atoms = [
        AtConf(tamp_problem.initial_config),
    ] + [
        AtPose(block, pose)
        for block, pose in tamp_problem.initial_poses.iteritems()
    ]
    if tamp_problem.initial_holding is False:
        initial_atoms.append(HandEmpty())
    else:
        initial_atoms.append(Holding(tamp_problem.initial_holding, BLOCK))

    goal_literals = []
    if tamp_problem.goal_holding is False:
        goal_literals.append(HandEmpty())
    elif tamp_problem.goal_holding is not None:
        goal_literals.append(Holding(tamp_problem.goal_holding))
    for block, goal in tamp_problem.goal_poses.iteritems():
        goal_literals.append(AtPose(block, goal))

    return STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                              cond_streams, constants)
Exemple #24
0
def create_problem(dt, GoalTest, ClearTest, CalcDiffSystem, InitialState):
    """
  Creates a generic non-holonomic motion planning problem
  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    X, DX, U = Type(), Type(), Type()

    # Fluent predicates
    AtX = Pred(X)

    # Fluent predicates
    GoalReached = Pred()

    # Static predicates
    ComputeDX = Pred(X, U, DX)
    Dynamics = Pred(X, DX, X)
    AtGoal = Pred(X)
    Clear = Pred(X, X)

    # Free parameters
    X1, X2 = Param(X), Param(X)
    DX1 = Param(DX)
    U1 = Param(U)
    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='simulate',
               parameters=[X1, U1, X2, DX1],
               condition=And(AtX(X1), ComputeDX(X1, U1, DX1),
                             Dynamics(X1, DX1, X2), Clear(X1, X2)),
               effect=And(Not(AtX(X1)), AtX(X2))),
    ]

    axioms = [
        Axiom(effect=GoalReached(), condition=Exists([X1], AtGoal(X1))),
    ]

    ####################

    # Conditional stream declarations
    def ComputeDXCalculator(X1F, DX1F):
        X2F = X1F[:]
        for i in range(len(X2F)):
            X2F[i] = X1F[i] + dt * DX1F[i]
        return X2F

    cond_streams = [
        FunctionStream(inputs=[X1, DX1],
                       outputs=[X2],
                       conditions=[],
                       effects=[Dynamics(X1, DX1, X2)],
                       function=ComputeDXCalculator),
        FunctionStream(inputs=[X1, U1],
                       outputs=[DX1],
                       conditions=[],
                       effects=[ComputeDX(X1, U1, DX1)],
                       function=CalcDiffSystem),
        TestStream(inputs=[X1, X2],
                   conditions=[],
                   effects=[Clear(X1, X2)],
                   test=ClearTest,
                   eager=True),
        TestStream(inputs=[X1],
                   conditions=[],
                   effects=[AtGoal(X1)],
                   test=GoalTest,
                   eager=True),
    ]

    ####################

    constants = [
        # TODO - need to declare control inputs (or make a stream for them)
    ]

    initial_atoms = [
        AtX(InitialState),
    ]

    goal_literals = [GoalReached()]

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem
def create_problem(goal, obstacles=(), distance=.25, digits=3):
    """
  Creates a Probabilistic Roadmap (PRM) motion planning problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    POINT = Type()
    REGION = Type()

    # Fluent predicates
    AtPoint = Pred(POINT)

    # Derived predicates
    InRegion = Pred(REGION)
    #IsReachable = Pred(POINT, POINT)
    IsReachable = Pred(POINT)

    # Stream predicates
    IsEdge = Pred(POINT, POINT)
    Contained = Pred(POINT, REGION)

    # Free parameters
    P1, P2 = Param(POINT), Param(POINT)
    R = Param(REGION)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        Action(name='move',
               parameters=[P1, P2],
               condition=And(AtPoint(P1), IsReachable(P2)),
               effect=And(AtPoint(P2), Not(AtPoint(P1))))
    ]

    axioms = [
        Axiom(effect=InRegion(R),
              condition=Exists([P1], And(AtPoint(P1), Contained(P1, R)))),
        Axiom(effect=IsReachable(P2),
              condition=Or(AtPoint(P2),
                           Exists([P1], And(IsReachable(P1), IsEdge(P1,
                                                                    P2))))),
    ]

    ####################

    def sampler():
        for _ in inf_sequence():
            yield [(sample(digits), ) for _ in range(10)]

    roadmap = set()

    def test(p1, p2):
        if not (get_distance(p1, p2) <= distance and is_collision_free(
            (p1, p2), obstacles)):
            return False
        roadmap.add((p1, p2))
        return True

    ####################

    # Conditional stream declarations
    cond_streams = [
        EasyListGenStream(
            inputs=[],
            outputs=[P1],
            conditions=[],
            effects=[],
            generator=sampler
        ),  # NOTE - version that only generators collision-free points
        GeneratorStream(inputs=[R],
                        outputs=[P1],
                        conditions=[],
                        effects=[Contained(P1, R)],
                        generator=lambda r:
                        (sample_box(r) for _ in inf_sequence())),
        TestStream(inputs=[P1, P2],
                   conditions=[],
                   effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
                   test=test,
                   eager=True),
    ]

    ####################

    constants = []

    initial_atoms = [
        AtPoint((0, 0)),
    ]

    goal_literals = []
    if is_region(goal):
        goal_literals.append(InRegion(goal))
    else:
        goal_literals.append(AtPoint(goal))

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem, roadmap
def compile_problem(oracle):
    problem = oracle.problem
    for obj in problem.goal_poses:
        if problem.goal_poses[obj] == 'initial':
            problem.goal_poses[obj] = oracle.initial_poses[obj]
        elif problem.goal_poses[
                obj] in oracle.initial_poses:  # Goal names other object (TODO - compile with initial)
            problem.goal_poses[obj] = oracle.initial_poses[
                problem.goal_poses[obj]]
    # oracle.initial_config = ??? # TODO - set the initial configuration

    transit_conf = Config(oracle.default_left_arm_config)

    ####################

    O, P, G, T = Param(OBJ), Param(POSE), Param(GRASP), Param(TRAJ)
    OB, R = Param(OBJ), Param(REG)

    BQ, MQ = Param(BASE_CONF), Param(MANIP_CONF)
    BQ2, MQ2 = Param(BASE_CONF), Param(MANIP_CONF)
    BT, MT = Param(BASE_TRAJ), Param(MANIP_TRAJ)

    rename_easy(locals())

    # Separate arm and base configs and trajectories?
    # Make a fixed configuration for arm stuff

    # If I separate arm and base poses, I can avoid worrying about collision when the base and things

    # Would I ever want to actually separate these and use the same grasp at a different config?
    # - Maybe for two arms?
    # - I don't want to reuse trajectories at different base configs. That wouldn't make sense
    # - Although if I manipulate two configs at once, maybe it would!

    # - Make constant arm transit configs?

    # TODO - maybe make an axiom to handle BT and MT when doing these things?
    # TODO - I could equip a manip conf with a base conf at all times if I really don't want them separate
    # NOTE - put then would need to update them whenever moving the base

    #actions = [
    #   Action(name='pick', parameters=[O, P, G, BQ, MQ],
    #     condition=And(PoseEq(O, P), HandEmpty(), Kin(O, P, G, BQ, MQ), BaseEq(BQ), ManipEq(MQ)),
    #       #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
    #     effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),
    #
    #   Action(name='place', parameters=[O, P, G, BQ, MQ],
    #     condition=And(GraspEq(O, G), Kin(O, P, G, BQ, MQ), BaseEq(BQ), ManipEq(MQ)),
    #       #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
    #     effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),
    #
    #   Action(name='move_arm', parameters=[MQ, MQ2, BQ, MT],
    #     condition=And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT)),
    #     effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))),
    #
    #   Action(name='move_base', parameters=[BQ, BQ2, MQ, BT], # TODO - put the arm motion stuff in an axiom
    #     condition=And(BaseEq(BQ), TransitManip(MQ), BaseMotion(BQ, BQ2, BT)),
    #     effect=And(BaseEq(BQ2), Not(BaseEq(BQ)))),
    # ]

    # TODO - should I include the grasp in move backwards trajectory?

    actions = [
        abs_action(
            name='pick',
            parameters=[O, P, G, BQ, MQ],
            conditions=[
                And(PoseEq(O, P), HandEmpty(),
                    Kin(O, P, G, BQ,
                        MQ)),  #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
                And(BaseEq(BQ), ManipEq(MQ))
            ],
            effect=And(GraspEq(O, G), Not(HandEmpty()), Not(PoseEq(O, P)))),
        abs_action(
            name='place',
            parameters=[O, P, G, BQ, MQ],
            conditions=[
                And(GraspEq(O, G),
                    Kin(O, P, G, BQ,
                        MQ)),  #ForAll([OB], Or(Equal(O, OB), Safe(OB, T)))),
                And(BaseEq(BQ), ManipEq(MQ))
            ],
            effect=And(PoseEq(O, P), HandEmpty(), Not(GraspEq(O, G)))),

        # NOTE - the hierarchical versions of this
        abs_action(
            name='move_arm',
            parameters=[MQ, MQ2, BQ,
                        MT],  # TODO - Or(TransitManip(MQ), TransitManip(MQ2))
            conditions=[
                And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ)),
                #And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ), Or(TransitManip(MQ), TransitManip(MQ2))) # This does something odd
                #And(ManipEq(MQ), ManipMotion(MQ, MQ2, BQ, MT), BaseEq(BQ),
                #  Or(TransitManip(MQ), LegalConf(BQ, MQ)),
                #  Or(TransitManip(MQ2), LegalConf(BQ, MQ2))) # This does something odd
            ],  # TODO - put an Or(Pair(MQ, BQ), Pair(MQ2, BQ)) or something
            effect=And(ManipEq(MQ2), Not(ManipEq(MQ)))),
        abs_action(name='move_base',
                   parameters=[BQ, BQ2, BT],
                   conditions=[
                       And(BaseEq(BQ), SafeManip(BT), BaseMotion(BQ, BQ2, BT))
                   ],
                   effect=And(BaseEq(BQ2), Not(BaseEq(BQ)))),

        #abs_action(name='move_base', parameters=[BQ, BQ2, MQ, BT],
        #  conditions=[
        #    And(BaseEq(BQ), TransitManip(MQ), BaseMotion(BQ, BQ2, BT))],
        #  effect=And(BaseEq(BQ2), Not(BaseEq(BQ)))),
    ]
    # NOTE - the parameters really aren't necessary

    # TODO - could remove any dependence on tests because there are so cheap with the evaluation (already can't use them with axioms)
    # TODO - could also just make the cost only depend on the introduced objects within the effects

    axioms = [
        Axiom(effect=Holding(O),
              condition=Exists([G], And(GraspEq(O, G), LegalGrasp(O, G)))),
        Axiom(effect=InRegion(O, R),
              condition=Exists([P], And(PoseEq(O, P), Contained(R, O, P)))),

        #Axiom(effect=Safe(O, T), condition=Exists([P], And(PoseEq(O, P), CFree(O, P, T)))),

        #Axiom(effect=SafeArm(O, MQ, T), condition=Exists([P, MQ], And(PoseEq(O, P), ManipEq(MQ), CFree(O, P, T)))),
        Axiom(effect=SafeManip(BT),
              condition=Exists(
                  [MQ], And(ManipEq(MQ),
                            TransitManip(MQ)))),  # TODO - add condition here
    ]

    # TODO - include parameters in STRIPS axiom?

    ####################

    def get_base_conf(conf):
        return Config(base_values_from_full_config(conf.value))

    def get_arm_conf(conf):
        return Config(
            arm_from_full_config(oracle.robot.GetActiveManipulator(),
                                 conf.value))

    def sample_poses(o, num_samples=1):
        while True:
            if AVOID_INITIAL:
                oracle.set_all_object_poses(oracle.initial_poses)
            else:
                oracle.set_all_object_poses({o: oracle.initial_poses[o]})
            yield list(
                islice(
                    random_region_placements(oracle,
                                             o,
                                             oracle.get_counters(),
                                             region_weights=True),
                    num_samples))

    def sample_grasps(o):
        yield get_grasps(oracle, o)

    def sample_region(o, r, num_samples=1):
        while True:
            oracle.set_all_object_poses({o: oracle.initial_poses[o]})
            yield list(
                islice(
                    random_region_placements(oracle,
                                             o, [r],
                                             region_weights=True),
                    num_samples))

    def sample_motion(o, p, g, max_calls=1, max_failures=50):
        oracle.set_all_object_poses(
            {o: p})  # TODO - saver for the initial state as well?
        if oracle.approach_collision(o, p, g):
            return
        for i in range(max_calls):
            pap = PickAndPlace(oracle.get_geom_hash(o), p, g)
            if not pap.sample(oracle,
                              o,
                              max_failures=max_failures,
                              sample_vector=False,
                              sample_arm=False,
                              check_base=False):
                break
            #pap.obj = o
            yield [(get_base_conf(pap.grasp_config),
                    get_arm_conf(pap.grasp_config))]

    def collision_free(o, p, t):
        if p is None or o == t.obj:
            return True
        holding = ObjGrasp(t.obj, t.grasp)
        #holding = Holding(self.oracle.get_body_name(pap.geom_hash), pap.grasp)
        if not DO_ARM_MOTION:
            return not oracle.holding_collision(t.grasp_config, o, p, holding)
        return not oracle.traj_holding_collision(t.approach_config, t.trajs, o,
                                                 p, holding)

    cond_streams = [
        EasyListGenStream(inputs=[O],
                          outputs=[P],
                          conditions=[],
                          effects=[LegalPose(O, P)],
                          generator=sample_poses),
        EasyListGenStream(inputs=[O],
                          outputs=[G],
                          conditions=[],
                          effects=[LegalGrasp(O, G)],
                          generator=sample_grasps),
        EasyListGenStream(inputs=[O, R],
                          outputs=[P],
                          conditions=[],
                          effects=[LegalPose(O, P),
                                   Contained(R, O, P)],
                          generator=sample_region),

        #MultiEasyGenStream(inputs=[O, P, G], outputs=[BQ, MQ], conditions=[LegalPose(O, P), LegalGrasp(O, G)],
        #           effects=[Kin(O, P, G, BQ, MQ)], generator=sample_motion),
        EasyListGenStream(inputs=[O, P, G],
                          outputs=[BQ, MQ],
                          conditions=[LegalPose(O, P),
                                      LegalGrasp(O, G)],
                          effects=[Kin(O, P, G, BQ, MQ),
                                   LegalConf(BQ, MQ)],
                          generator=sample_motion),
        # TODO - this doesn't work for constants

        # TODO - make a condition that MQ, MQ2 both work for BQ. Otherwise, it will still create a ton of streams
        #EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[],
        #           effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=lambda *args: [None], order=1),
        EasyGenStream(inputs=[MQ, MQ2, BQ],
                      outputs=[MT],
                      conditions=[TransitManip(MQ),
                                  LegalConf(BQ, MQ2)],
                      effects=[ManipMotion(MQ, MQ2, BQ, MT)],
                      generator=lambda *args: [None],
                      order=1),
        EasyGenStream(inputs=[MQ, MQ2, BQ],
                      outputs=[MT],
                      conditions=[LegalConf(BQ, MQ),
                                  TransitManip(MQ2)],
                      effects=[ManipMotion(MQ, MQ2, BQ, MT)],
                      generator=lambda *args: [None],
                      order=1),
        #EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[LegalConf(BQ, MQ), LegalConf(BQ, MQ2)],
        #           effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=lambda *args: [None], order=1),
        EasyGenStream(inputs=[BQ, BQ2],
                      outputs=[BT],
                      conditions=[],
                      effects=[BaseMotion(BQ, BQ2, BT)],
                      generator=lambda *args: [None],
                      order=1),
        #effects=[BaseMotion(BQ, BQ2, BT)], generator=lambda *args: [None], order=2), # NOTE - causes a bug!

        #EasyTestStream(inputs=[O, P, T], conditions=[LegalPose(O, P)], effects=[CFree(O, P, T)],
        #            test=collision_free, eager=EAGER_TESTS),
    ]

    ####################

    #print transit_conf.value
    #print oracle.initial_config.value

    initial_base = get_base_conf(oracle.initial_config)
    initial_manip = get_arm_conf(oracle.initial_config)
    print initial_base.value
    print initial_manip.value

    constants = []

    initial_atoms = [
        BaseEq(initial_base),
        ManipEq(initial_manip),
        HandEmpty(),
        TransitManip(transit_conf),
        LegalConf(initial_base, initial_manip),
    ]
    for obj, pose in oracle.initial_poses.iteritems():
        initial_atoms += [PoseEq(obj, pose), LegalPose(obj, pose)]

    # TODO - serialize goals by object name
    goal_literals = []
    if problem.goal_holding is not None:
        if problem.goal_holding is False:
            goal_literals.append(HandEmpty())
        elif isinstance(problem.goal_holding, ObjGrasp):
            goal_literals.append(
                GraspEq(problem.goal_holding.object_name,
                        problem.goal_holding.grasp))
        elif problem.goal_holding in oracle.get_objects():
            goal_literals.append(Holding(problem.goal_holding))
        else:
            raise Exception()
    for obj, pose in problem.goal_poses.iteritems():
        goal_literals.append(PoseEq(obj, pose))
        initial_atoms.append(LegalPose(obj, pose))
    for obj, region in problem.goal_regions.iteritems():
        goal_literals.append(InRegion(obj, region))

    #goal_formula = And(*goal_literals)
    #goal_formula = AbsCondition(map(And, goal_literals)) # TODO - bug where goals must have And
    goal_formula = AbsCondition(
        goal_literals)  # TODO - bug where goals must have And

    return STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms,
                              cond_streams, constants)
Exemple #27
0
def create_problem(initRobotPos = (0.5, 0.5),
                   initRobotVar = 0.01,
                   maxMoveDist = 5.0,
                   beaconPos = (1, 1),
                   homePos = (0, 0),
                   goalPosEps = 0.1,
                   goalVar = 0.1,
                   odoErrorRate = 0.1,
                   obsVarPerDistFromSensor = 10.0,
                   minObsVar = 0.001,
                   domainSize = 20,
                   verboseFns = True):
  """
  :return: a :class:`.STRIPStreamProblem`
  """
  # Data types
  POS = Type()   # 2D position
  VAR = Type()   # 2D variance
  DIST = Type()  # positive scalar

  # Fluent predicates
  RobotPos = Pred(POS)
  RobotVar = Pred(VAR)

  # Derived predicates
  KnowYouAreHome = Pred()

  # Static predicates
  DistBetween = Pred(POS, POS, DIST) # Distance between two positions (function)
  LessThanV = Pred(VAR, VAR) # Less than, on distances
  LessThanD = Pred(DIST, DIST) # Less than, on distances
  OdometryVar = Pred(VAR, VAR, DIST) # How does odometry variance increase?
  SensorVar = Pred(VAR, VAR, DIST) # How does an observation decrease variance?
  LegalPos = Pred(POS) # Any legal robot pos

  # Free parameters
  RPOS1, RPOS2, RVAR1, RVAR2 = Param(POS), Param(POS), Param(VAR), Param(VAR)
  DIST1, DIST2 = Param(DIST), Param(DIST)

  def odoVarFun(rv, d):
    odoVar = (d * odoErrorRate)**2
    result = rv + odoVar
    if verboseFns: print 'ovf:', rv, d, result
    return [result]

  def sensorVarFun(rv, d):
    obsVar = max(d / obsVarPerDistFromSensor, minObsVar)
    result = 1.0 / ((1.0 / rv) + (1.0 / obsVar))
    if verboseFns: print 'svf:', rv, d, result
    return [result]

  def randPos():
    while True:
      result = (random.random() * domainSize, random.random() * domainSize)
      print 'rp:', result
      yield [result]

  def legalTest(rp):
    (x, y) = rp
    result = (0 <= x <= domainSize) and (0 <= y <= domainSize)
    if not result: print 'not legal:', rp
    return result

  actions = [
    Action(name='Move',
           parameters=[RPOS1, RPOS2, RVAR1, RVAR2, DIST1],
           condition = And(RobotPos(RPOS1),
                           RobotVar(RVAR1),
                           LegalPos(RPOS2), # Generate an intermediate pos
                           DistBetween(RPOS1, RPOS2, DIST1),
                           LessThanD(DIST1, maxMoveDist),
                           OdometryVar(RVAR1, RVAR2, DIST1)),
           effect = And(RobotPos(RPOS2),
                        RobotVar(RVAR2),
                        Not(RobotPos(RPOS1)),
                        Not(RobotVar(RVAR1)))),

    # Action(name='Look',
    #        parameters=[RPOS1, RVAR1, RVAR2, DIST1],
    #        condition = And(RobotPos(RPOS1),
    #                        RobotVar(RVAR1),
    #                        DistBetween(RPOS1, beaconPos, DIST1),
    #                        SensorVar(RVAR1, RVAR2, DIST1)),
    #        effect = And(RobotVar(RVAR2),
    #                     Not(RobotVar(RVAR1))))

  ]

  axioms = [
    Axiom(effect = KnowYouAreHome(),
          condition = Exists([RPOS1, RVAR1, DIST1], 
                             And(RobotPos(RPOS1),
                                 RobotVar(RVAR1),
                                 DistBetween(RPOS1, homePos, DIST1),
                                 LessThanD(DIST1, goalPosEps),
                                 LessThanV(RVAR1, goalVar))))
  ]

  # Conditional stream declarations
  cond_streams = [
    TestStream(inputs = [RPOS1],
               conditions = [],
               effects = [LegalPos(RPOS1)],
               test = legalTest,
               eager = True),

    GeneratorStream(inputs = [],
                    outputs = [RPOS1],
                    conditions = [],
                    effects = [LegalPos(RPOS1)],
                    generator = randPos),

    GeneratorStream(inputs = [RPOS1, RPOS2],
                    outputs = [DIST1],
                    conditions = [],
                    effects = [DistBetween(RPOS1, RPOS2, DIST1)],
                    generator = lambda rp1, rp2: [distance(rp1, rp2)]),

    GeneratorStream(inputs = [RVAR1, DIST1],
                    outputs = [RVAR2],
                    conditions = [],
                    effects = [OdometryVar(RVAR1, RVAR2, DIST1)],
                    generator = odoVarFun),

    # GeneratorStream(inputs = [RVAR1, DIST1],
    #                 outputs = [RVAR2],
    #                 conditions = [],
    #                 effects = [SensorVar(RVAR1, RVAR2, DIST1)],
    #                 generator = sensorVarFun),

    TestStream(inputs = [DIST1, DIST2],
               conditions = [],
               effects = [LessThanD(DIST1, DIST2)],
               test = lt,
               eager = True),

    TestStream(inputs = [RVAR1, RVAR2],
               conditions = [],
               effects = [LessThanV(RVAR1, RVAR2)],
               test = lt, eager = True)

  ]

  ####################

  constants = [
  ]

  initial_atoms = [
    RobotPos(initRobotPos),
    RobotVar(initRobotVar),
    LegalPos(homePos),
    LegalPos((.1, .1)),
    LegalPos((3.0, .1)),
    LegalPos((6.0, .1))
  ]

  goal_literals = [
    KnowYouAreHome()
    ]

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms,
                                 cond_streams, constants)

  return problem
 def add_refined(self):
     self.add_conditions(Not(self.RefinedPredicate(*self.parameters)))
     for operator in self.refinement:
         operator.add_conditions(
             self.get_valid_atom(operator, self.parameters))
Exemple #29
0
def create_problem(goal, obstacles=(), distance=.25, digits=3):
    """
  Creates a Probabilistic Roadmap (PRM) motion planning problem.

  :return: a :class:`.STRIPStreamProblem`
  """

    # Data types
    POINT = Type()
    REGION = Type()

    # Fluent predicates
    AtPoint = Pred(POINT)

    # Derived predicates
    InRegion = Pred(REGION)

    # Stream predicates
    AreNearby = Pred(POINT, POINT)
    IsEdge = Pred(POINT, POINT)
    Contained = Pred(POINT, REGION)

    # Functions
    Distance = Func(POINT, POINT)

    # Free parameters
    P1, P2 = Param(POINT), Param(POINT)
    R = Param(REGION)

    rename_easy(locals())  # Trick to make debugging easier

    ####################

    actions = [
        #STRIPSAction(name='move', parameters=[P1, P2],
        #  conditions=[AtPoint(P1), IsEdge(P1, P2)],
        #  effects=[AtPoint(P2), Not(AtPoint(P1))], cost=1), # Fixed cost

        #STRIPSAction(name='move', parameters=[P1, P2],
        #  conditions=[AtPoint(P1), IsEdge(P1, P2)],
        #  effects=[AtPoint(P2), Not(AtPoint(P1)), Cost(Distance(P1, P2))]), # Cost depends on parameters
        Action(name='move',
               parameters=[P1, P2],
               condition=And(AtPoint(P1), IsEdge(P1, P2)),
               effect=And(AtPoint(P2), Not(AtPoint(P1))),
               costs=[1, Distance(P1, P2)]),
    ]

    axioms = [
        #Axiom(effect=GoalReached(), condition=Exists([P1], And(AtPos(P1), Contained(P1)))),
        STRIPSAxiom(conditions=[AtPoint(P1), Contained(P1, R)],
                    effects=[InRegion(R)])
    ]

    ####################

    # Conditional stream declarations
    cond_streams = [
        GeneratorStream(
            inputs=[],
            outputs=[P1],
            conditions=[],
            effects=[],
            generator=lambda: ((sample(digits), ) for _ in inf_sequence())
        ),  # NOTE - version that only generators collision-free points
        GeneratorStream(inputs=[R],
                        outputs=[P1],
                        conditions=[],
                        effects=[Contained(P1, R)],
                        generator=lambda r:
                        ((sample_box(r), ) for _ in inf_sequence())),

        #TestStream(inputs=[P1, P2], conditions=[], effects=[AreNearby(P1, P2), AreNearby(P2, P1)],
        #           test=lambda p1, p2: get_distance(p1, p2) <= distance, eager=True),

        #TestStream(inputs=[P1, P2], conditions=[AreNearby(P1, P2)], effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
        #           test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True),
        TestStream(
            inputs=[P1, P2],
            conditions=[],
            effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
            #test=lambda p1, p2: is_collision_free((p1, p2), obstacles), eager=True),
            test=lambda p1, p2:
            (get_distance(p1, p2) <= distance) and is_collision_free(
                (p1, p2), obstacles),
            eager=True),

        #TestStream(inputs=[P1, P2], conditions=[], effects=[IsEdge(P1, P2), IsEdge(P2, P1)],
        #           test=lambda p1, p2: get_distance(p1, p2) <= distance and is_collision_free((p1, p2), obstacles), eager=True),

        #TestStream(inputs=[P1, R], conditions=[], effects=[Contained(P1, R)],
        #           test=lambda p, r: contains(p, r), eager=True),
        CostStream(inputs=[P1, P2],
                   conditions=[],
                   effects=[Distance(P1, P2),
                            Distance(P2, P1)],
                   function=get_distance,
                   scale=100,
                   eager=True),
    ]

    ####################

    constants = []

    initial_atoms = [
        AtPoint((0, 0)),
    ]

    goal_literals = []
    if is_region(goal):
        goal_literals.append(InRegion(goal))
    else:
        goal_literals.append(AtPoint(goal))

    problem = STRIPStreamProblem(initial_atoms, goal_literals,
                                 actions + axioms, cond_streams, constants)

    return problem
Exemple #30
0
def create_problem():
  """
  Creates the 1D task and motion planning STRIPStream problem.

  :return: a :class:`.STRIPStreamProblem`
  """

  blocks = ['block%i'%i for i in range(3)]
  num_poses = pow(10, 10)

  initial_config = 0 # the initial robot configuration is 0
  initial_poses = {block: i for i, block in enumerate(blocks)} # the initial pose for block i is i

  goal_poses = {block: i+1 for i, block in enumerate(blocks)} # the goal pose for block i is i+1

  ####################

  VALUE = Type()

  # Fluent predicates
  AtConf = Pred(VALUE)
  AtPose = Pred(VALUE, VALUE)
  HandEmpty = Pred()
  Holding = Pred(VALUE)

  # Derived predicates
  Safe = Pred(VALUE, VALUE, VALUE)

  # Static predicates
  IsBlock = Pred(VALUE)
  IsPose = Pred(VALUE)
  IsConf = Pred(VALUE)
  LegalKin = Pred(VALUE, VALUE)
  CollisionFree = Pred(VALUE, VALUE, VALUE, VALUE)

  # Free parameters
  B1, B2 = Param(VALUE), Param(VALUE)
  P1, P2 = Param(VALUE), Param(VALUE)
  Q1, Q2 = Param(VALUE), Param(VALUE)

  rename_easy(locals()) # Trick to make debugging easier

  ####################

  # NOTE - it would be easier to just update an in hand pose

  actions = [
    STRIPSAction(name='pick', parameters=[B1, P1, Q1],
      conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1),
                  AtPose(B1, P1), HandEmpty(), AtConf(Q1)],
      effects=[Holding(B1), Not(AtPose(B1, P1)), Not(HandEmpty())]),

    STRIPSAction(name='place', parameters=[B1, P1, Q1],
      conditions=[IsBlock(B1), IsPose(P1), IsConf(Q1), LegalKin(P1, Q1),
                  Holding(B1), AtConf(Q1)] + [Safe(b2, B1, P1) for b2 in blocks],
      effects=[AtPose(B1, P1), HandEmpty(), Not(Holding(B1))]),

    STRIPSAction(name='move', parameters=[Q1, Q2],
      conditions=[IsConf(Q1), IsConf(Q2), AtConf(Q1)],
      effects=[AtConf(Q2), Not(AtConf(Q1))]),
  ]

  axioms = [ # TODO - need to combine axioms
    #Axiom(effect=Safe(B2, B1, P1),
    #      condition=Exists([P2], And(AtPose(B2, P2), CollisionFree(B1, P1, B2, P2)))), # Infers B2 is at a safe pose wrt B1 at P1
  ]

  ####################

  # Conditional stream declarations
  cond_streams = [
    GeneratorStream(inputs=[], outputs=[P1], conditions=[], effects=[IsPose(P1)],
                    generator=lambda: xrange(num_poses)), # Enumerating all the poses

    GeneratorStream(inputs=[P1], outputs=[Q1], conditions=[IsPose(P1)], effects=[IsConf(Q1), LegalKin(P1, Q1)],
                    generator=lambda p: [p]), # Inverse kinematics

    TestStream(inputs=[B1, P1, B2, P2], conditions=[IsBlock(B1), IsPose(P1), IsBlock(B2), IsPose(P2)],
               effects=[CollisionFree(B1, P1, B2, P2)], test=lambda b1, p1, b2, p2: p1 != p2, eager=True), # Collision checking
  ]

  ####################

  constants = []

  initial_atoms = [
    IsConf(initial_config),
    AtConf(initial_config),
    HandEmpty()
  ]
  for block, pose in initial_poses.iteritems():
    initial_atoms += [
      IsBlock(block),
      IsPose(pose),
      AtPose(block, pose),
    ]
  goal_literals = []
  for block, pose in goal_poses.iteritems():
    initial_atoms += [
      IsBlock(block),
      IsPose(pose),
    ]
    goal_literals.append(AtPose(block, pose))

  problem = STRIPStreamProblem(initial_atoms, goal_literals, actions + axioms, cond_streams, constants)

  return problem