def analyseArticle(self, revisions): # Container of revisions. # Revisions to compare. revision_curr = self.revision_curr revision_prev = self.revision_prev text_curr = None i = 1 # Iterate over revisions of the article. for revision in revisions: if 'texthidden' in revision: continue if 'textmissing' in revision: continue #revid = revision.getId() timestamp = revision['timestamp'] #timestamp_iso = dateutil.parser.parse(datetime.datetime.utcfromtimestamp(timestamp).isoformat()) # if timestamp_iso > self.lastrev_date: # #print timestamp_iso, self.lastrev_date # revid = revision.getId() # self.lastrev_date = timestamp_iso # self.lastrev = revid vandalism = False # Update the information about the previous revision. revision_prev = revision_curr #print "----" #print revision text = revision['*'] # if text == None: # text = '' if (revision['sha1'] == ""): revision['sha1'] = Text.calculateHash(text.encode("utf-8")) if (revision['sha1'] in self.spam): vandalism = True #TODO: self.spam detection: DELETION text_len = len(text) try: if (revision['comment'] != '' and 'minor' in revision): pass else: if (revision_prev.length > PREVIOUS_LENGTH) and (text_len < CURR_LENGTH) and (((text_len-revision_prev.length)/float(revision_prev.length)) <= CHANGE_PERCENTAGE): vandalism = True revision_curr = revision_prev except: pass #if (vandalism): #print "---------------------------- FLAG 1" #print revision.getId() #print revision.getText() #print if (not vandalism): # Information about the current revision. revision_curr = Revision() revision_curr.id = i revision_curr.wikipedia_id = int(revision['revid']) revision_curr.length = text_len revision_curr.time = revision['timestamp'] #added #print "revision_curr.time ", revision_curr.time #datetime.datetime.utcfromtimestamp(revision['timestamp']).isoformat() # Some revisions don't have contributor. #if (revision.getContributor() != None): try: revision_curr.contributor_id = revision['userid'] except: revision_curr.contributor_id = "" try: revision_curr.contributor_name = revision['user'] except: revision_curr.contributor_name = "" #else: #revision_curr.contributor_id = 'Not Available' #revision_curr.contribur_name = 'Not Available' # Content within the revision. text_curr = text.encode('utf-8') text_curr = text_curr.lower() #revision_curr.content = text_curr # Perform comparison. vandalism = self.determineAuthorship(revision_curr, revision_prev, text_curr) if (not vandalism): # Add the current revision with all the information. self.revisions.update({revision_curr.wikipedia_id : revision_curr}) # Update the fake revision id. i = i+1 else: #print "---------------------------- FLAG 2" #print revision.getId() #print revision.getText() #print revision_curr = revision_prev self.spam.append(revision['sha1']) self.revision_prev = revision_prev self.revision_curr = revision_curr
def analyseSentencesInParagraphs(self,unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in self.sentences_ht.keys())): for sentence_prev in self.sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: #word_prev.freq.append(revision_curr.wikipedia_id) #word_prev.freq = word_prev.freq + 1 word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append(sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append(sentence_curr) else: paragraph_curr.sentences.update({sentence_curr.hash_value : [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)
def analyseWordsInSentences(self, unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism): global GLOBAL_ID matched_words_prev = [] unmatched_words_prev = [] # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # self.spam detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word #added word_curr.time = revision_curr.time #word_curr.freq.append(revision_curr.wikipedia_id) word_curr.internal_id = GLOBAL_ID sentence_curr.words.append(word_curr) GLOBAL_ID = GLOBAL_ID + 1 return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff)+1 break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True #word_prev.deleted.append(revision_curr.wikipedia_id) matched_words_prev.append(word_prev) diff[pos] = '' break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.internal_id = GLOBAL_ID #word_curr.freq.append(revision_curr.wikipedia_id) #added word_curr.time = revision_curr.time sentence_curr.words.append(word_curr) GLOBAL_ID = GLOBAL_ID + 1 diff[pos] = '' pos = len(diff)+1 pos = pos + 1 if not(curr_matched): word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id #word_curr.freq.append(revision_curr.wikipedia_id) #added word_curr.time = revision_curr.time sentence_curr.words.append(word_curr) word_curr.internal_id = GLOBAL_ID GLOBAL_ID = GLOBAL_ID + 1 return (matched_words_prev, possible_vandalism)
def analyseWordsInSentences(unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism, relation): """DESCRIPTION Args: param1: The first parameter. param2: The second parameter. Returns: True if successful, False otherwise. """ matched_words_prev = [] unmatched_words_prev = [] global WORD_ID # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # SPAM detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.internal_id = WORD_ID word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word sentence_curr.words.append(word_curr) word_curr.used.append(revision_curr.wikipedia_id) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.used.append(revision_curr.wikipedia_id) word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff)+1 #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True matched_words_prev.append(word_prev) diff[pos] = '' word_prev.deleted.append(revision_curr.wikipedia_id) if (revisions[word_prev.revision].contributor_name != revision_curr.contributor_name): if (word_prev.revision in relation.deleted.keys()): relation.deleted.update({word_prev.revision : relation.deleted[word_prev.revision] + 1 }) else: relation.deleted.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_deleted.keys()): relation.self_deleted.update({word_prev.revision : relation.self_deleted[word_prev.revision] + 1 }) else: relation.self_deleted.update({word_prev.revision : 1 }) break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.internal_id = WORD_ID word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 diff[pos] = '' pos = len(diff)+1 pos = pos + 1 if not(curr_matched): word_curr = Word() word_curr.internal_id = WORD_ID word_curr.value = word word_curr.author_id = revision_curr.contributor_id word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.used.append(revision_curr.wikipedia_id) sentence_curr.words.append(word_curr) relation.added = relation.added + 1 WORD_ID = WORD_ID + 1 return (matched_words_prev, possible_vandalism)
def analyseParagraphsInRevision(self, revision_curr, revision_prev, text_curr): # Containers for unmatched and matched paragraphs. unmatched_paragraphs_curr = [] unmatched_paragraphs_prev = [] matched_paragraphs_prev = [] # Split the text of the current into paragraphs. paragraphs = Text.splitIntoParagraphs(text_curr) # Iterate over the paragraphs of the current version. for paragraph in paragraphs: # Build Paragraph structure and calculate hash value. paragraph = paragraph.strip() hash_curr = Text.calculateHash(paragraph) matched_curr = False # If the paragraph is in the previous revision, # update the authorship information and mark both paragraphs as matched (also in HT). if (hash_curr in revision_prev.ordered_paragraphs): for paragraph_prev in revision_prev.paragraphs[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys(): for sentence_prev in paragraph_prev.sentences[hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_prev.hash_value].append(paragraph_prev) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) else: revision_curr.paragraphs.update({paragraph_prev.hash_value : [paragraph_prev]}) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) break # If the paragraph is not in the previous revision, but it is in an older revision # update the authorship information and mark both paragraphs as matched. if ((not matched_curr) and (hash_curr in self.paragraphs_ht)): for paragraph_prev in self.paragraphs_ht[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys(): for sentence_prev in paragraph_prev.sentences[hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_prev.hash_value].append(paragraph_prev) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) else: revision_curr.paragraphs.update({paragraph_prev.hash_value : [paragraph_prev]}) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) break # If the paragraph did not match with previous revisions, # add to container of unmatched paragraphs for further analysis. if (not matched_curr): paragraph_curr = Paragraph() paragraph_curr.hash_value = Text.calculateHash(paragraph) paragraph_curr.value = paragraph revision_curr.ordered_paragraphs.append(paragraph_curr.hash_value) if (paragraph_curr.hash_value in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_curr.hash_value].append(paragraph_curr) else: revision_curr.paragraphs.update({paragraph_curr.hash_value : [paragraph_curr]}) unmatched_paragraphs_curr.append(paragraph_curr) # Identify unmatched paragraphs in previous revision for further analysis. for paragraph_prev_hash in revision_prev.ordered_paragraphs: for paragraph_prev in revision_prev.paragraphs[paragraph_prev_hash]: if (not paragraph_prev.matched): unmatched_paragraphs_prev.append(paragraph_prev) return (unmatched_paragraphs_curr, unmatched_paragraphs_prev, matched_paragraphs_prev)
def analyseSentencesInParagraphs(unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr, revision_prev, relation): """DESCRIPTION Args: param1: The first parameter. param2: The second parameter. Returns: True if successful, False otherwise. """ # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in sentences_ht.keys())): for sentence_prev in sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not(matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) if (revision_prev.wikipedia_id not in word_prev.used): word_prev.freq.append(revision_curr.wikipedia_id) # Revert: reintroducing something that somebody else deleted if (revision_prev.wikipedia_id not in word_prev.used): for elem in word_prev.deleted: #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert if (elem in revisions.keys()): if (revisions[elem].contributor_name != revision_curr.contributor_name): if (elem in relation.revert.keys()): relation.revert.update({elem : relation.revert[elem] + 1}) else: relation.revert.update({elem : 1}) else: if (elem in relation.self_revert.keys()): relation.self_revert.update({elem : relation.self_revert[elem] + 1}) else: relation.self_revert.update({elem : 1}) #print "relation.revert", word_prev.value, word_prev.deleted, relation.revert, revision_curr.wikipedia_id if (revision_prev.wikipedia_id not in word_prev.used): if (word_prev.revision in revisions.keys()): if (revisions[word_prev.revision].contributor_name != revision_curr.contributor_name): if (word_prev.revision in relation.reintroduced.keys()): relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) else: relation.reintroduced.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_reintroduced.keys()): relation.self_reintroduced.update({word_prev.revision : relation.self_reintroduced[word_prev.revision] + 1}) else: relation.self_reintroduced.update({word_prev.revision : 1}) # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) else: paragraph_curr.sentences.update({sentence_prev.hash_value : [sentence_prev]}) paragraph_curr.ordered_sentences.append(sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append(sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[sentence_curr.hash_value].append(sentence_curr) else: paragraph_curr.sentences.update({sentence_curr.hash_value : [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)
def analyseArticle(file_name): """ DESCRIPTION :Parameters: NAME : TYPE DESCRIPTIOIN :Return: DESCRIPTION """ # Container of relationships. relations = {} # Revisions to compare. revision_curr = Revision() revision_prev = Revision() text_curr = None # Access the file. dumpIterator = dump.Iterator(file_name) # Iterate over the pages. for page in dumpIterator.readPages(): i = 0 # Iterate over revisions of the article. for revision in page.readRevisions(): vandalism = False #print "processing rev", revision.getId() # Update the information about the previous revision. revision_prev = revision_curr if (revision.getSha1() == None): revision.setSha1(Text.calculateHash(revision.getText().encode("utf-8"))) if (revision.getSha1() in spam): vandalism = True #TODO: SPAM detection: DELETION if (revision.getComment()!= None and revision.getComment().find(FLAG) > 0): pass else: if (revision_prev.length > PREVIOUS_LENGTH) and (len(revision.getText()) < CURR_LENGTH) and (((len(revision.getText())-revision_prev.length)/float(revision_prev.length)) <= CHANGE_PERCENTAGE): vandalism = True revision_curr = revision_prev #if (vandalism): #print "---------------------------- FLAG 1" #print "SPAM", revision.getId() #print revision.getText() #print if (not vandalism): # Information about the current revision. revision_curr = Revision() revision_curr.id = i revision_curr.wikipedia_id = int(revision.getId()) revision_curr.length = len(revision.getText()) revision_curr.timestamp = revision.getTimestamp() revision_curr.comment = revision.getComment() # Relation of the current relation. relation = Relation() relation.revision = int(revision.getId()) relation.length = len(revision.getText()) # Some revisions don't have contributor. if (revision.getContributor() != None): revision_curr.contributor_id = revision.getContributor().getId() revision_curr.contributor_name = revision.getContributor().getUsername().encode('utf-8') relation.author = revision.getContributor().getUsername().encode('utf-8') else: revision_curr.contributor_id = 'Not Available ' + revision.getId() revision_curr.contribur_name = 'Not Available ' + revision.getId() relation.author = 'Not Available ' + revision.getId() # Content within the revision. text_curr = revision.getText().encode('utf-8') text_curr = text_curr.lower() revision_curr.content = text_curr # Perform comparison. vandalism = determineAuthorship(revision_curr, revision_prev, text_curr, relation) if (not vandalism): #print "NOT SPAM", revision.getId() # Add the current revision with all the information. revisions.update({revision_curr.wikipedia_id : revision_curr}) relations.update({revision_curr.wikipedia_id : relation}) revision_order.append((revision_curr.wikipedia_id, False)) # Update the fake revision id. i = i+1 # Calculate the number of tokens in the revision. total = 0 for p in revision_curr.ordered_paragraphs: for paragraph_curr in revision_curr.paragraphs[p]: for hash_sentence_curr in paragraph_curr.sentences.keys(): for sentence_curr in paragraph_curr.sentences[hash_sentence_curr]: total = total + len(sentence_curr.words) revision_curr.total_tokens = total relation.total_tokens = total else: #print "---------------------------- FLAG 2" #print "SPAM", revision.getId() #print revision.getText() #print revision_order.append((revision_curr.wikipedia_id, True)) revision_curr = revision_prev spam.append(revision.getSha1()) return (revisions, revision_order, relations)
def analyseParagraphsInRevision(revision_curr, revision_prev, text_curr, relation): """DESCRIPTION Args: param1: The first parameter. param2: The second parameter. Returns: True if successful, False otherwise. """ # Containers for unmatched and matched paragraphs. unmatched_paragraphs_curr = [] unmatched_paragraphs_prev = [] matched_paragraphs_prev = [] # Split the text of the current into paragraphs. paragraphs = Text.splitIntoParagraphs(text_curr) # Iterate over the paragraphs of the current version. for paragraph in paragraphs: # Build Paragraph structure and calculate hash value. paragraph = paragraph.strip() hash_curr = Text.calculateHash(paragraph) matched_curr = False # If the paragraph is in the previous revision, # update the authorship information and mark both paragraphs as matched (also in HT). if (hash_curr in revision_prev.ordered_paragraphs): for paragraph_prev in revision_prev.paragraphs[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys(): for sentence_prev in paragraph_prev.sentences[hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) #if (word_prev.revision in relation.reintroduced.keys()): # relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) #else: # relation.reintroduced.update({word_prev.revision : 1 }) # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_prev.hash_value].append(paragraph_prev) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) else: revision_curr.paragraphs.update({paragraph_prev.hash_value : [paragraph_prev]}) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) break # If the paragraph is not in the previous revision, but it is in an older revision # update the authorship information and mark both paragraphs as matched. if ((not matched_curr) and (hash_curr in paragraphs_ht)): for paragraph_prev in paragraphs_ht[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys(): for sentence_prev in paragraph_prev.sentences[hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: word_prev.matched = True word_prev.used.append(revision_curr.wikipedia_id) if (revision_prev.wikipedia_id not in word_prev.used): word_prev.freq.append(revision_curr.wikipedia_id) # Revert: reintroducing something that somebody else deleted, # (and was not used in the previous revision) if (revision_prev.wikipedia_id not in word_prev.used): #if (revision_curr.wikipedia_id == 11): # print "Revert in 11", word_prev.value, word_prev.deleted, relation.revert for elem in word_prev.deleted: if (elem in revisions.keys()): if (revisions[elem].contributor_name != revision_curr.contributor_name): if (elem in relation.revert.keys()): relation.revert.update({elem : relation.revert[elem] + 1}) else: relation.revert.update({elem : 1}) else: if (elem in relation.self_revert.keys()): relation.self_revert.update({elem : relation.self_revert[elem] + 1}) else: relation.self_revert.update({elem : 1}) if (revision_prev.wikipedia_id not in word_prev.used): if (word_prev.revision in revisions.keys()): if (revisions[word_prev.revision].contributor_name != revision_curr.contributor_name): if (word_prev.revision in relation.reintroduced.keys()): relation.reintroduced.update({word_prev.revision : relation.reintroduced[word_prev.revision] + 1 }) else: relation.reintroduced.update({word_prev.revision : 1 }) else: if (word_prev.revision in relation.self_reintroduced.keys()): relation.self_reintroduced.update({word_prev.revision : relation.self_reintroduced[word_prev.revision] + 1}) else: relation.self_reintroduced.update({word_prev.revision : 1}) # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_prev.hash_value].append(paragraph_prev) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) else: revision_curr.paragraphs.update({paragraph_prev.hash_value : [paragraph_prev]}) revision_curr.ordered_paragraphs.append(paragraph_prev.hash_value) break # If the paragraph did not match with previous revisions, # add to container of unmatched paragraphs for further analysis. if (not matched_curr): paragraph_curr = Paragraph() paragraph_curr.hash_value = Text.calculateHash(paragraph) paragraph_curr.value = paragraph revision_curr.ordered_paragraphs.append(paragraph_curr.hash_value) if (paragraph_curr.hash_value in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_curr.hash_value].append(paragraph_curr) else: revision_curr.paragraphs.update({paragraph_curr.hash_value : [paragraph_curr]}) unmatched_paragraphs_curr.append(paragraph_curr) # Identify unmatched paragraphs in previous revision for further analysis. for paragraph_prev_hash in revision_prev.ordered_paragraphs: for paragraph_prev in revision_prev.paragraphs[paragraph_prev_hash]: if (not paragraph_prev.matched): unmatched_paragraphs_prev.append(paragraph_prev) return (unmatched_paragraphs_curr, unmatched_paragraphs_prev, matched_paragraphs_prev)
def analyseArticle(self, revisions): # Container of revisions. # Revisions to compare. revision_curr = self.revision_curr revision_prev = self.revision_prev text_curr = None i = 1 # Iterate over revisions of the article. for revision in revisions: if 'texthidden' in revision: continue if 'textmissing' in revision: continue #revid = revision.getId() timestamp = revision['timestamp'] #timestamp_iso = dateutil.parser.parse(datetime.datetime.utcfromtimestamp(timestamp).isoformat()) # if timestamp_iso > self.lastrev_date: # #print timestamp_iso, self.lastrev_date # revid = revision.getId() # self.lastrev_date = timestamp_iso # self.lastrev = revid vandalism = False # Update the information about the previous revision. revision_prev = revision_curr #print "----" #print revision text = revision['*'] # if text == None: # text = '' if (revision['sha1'] == ""): revision['sha1'] = Text.calculateHash(text.encode("utf-8")) if (revision['sha1'] in self.spam): vandalism = True #TODO: self.spam detection: DELETION text_len = len(text) try: if (revision['comment'] != '' and 'minor' in revision): pass else: if (revision_prev.length > PREVIOUS_LENGTH ) and (text_len < CURR_LENGTH) and (( (text_len - revision_prev.length) / float(revision_prev.length)) <= CHANGE_PERCENTAGE): vandalism = True revision_curr = revision_prev except: pass #if (vandalism): #print "---------------------------- FLAG 1" #print revision.getId() #print revision.getText() #print if (not vandalism): # Information about the current revision. revision_curr = Revision() revision_curr.id = i revision_curr.wikipedia_id = int(revision['revid']) revision_curr.length = text_len revision_curr.time = revision['timestamp'] #added #print "revision_curr.time ", revision_curr.time #datetime.datetime.utcfromtimestamp(revision['timestamp']).isoformat() # Some revisions don't have contributor. #if (revision.getContributor() != None): try: revision_curr.contributor_id = revision['userid'] except: revision_curr.contributor_id = "" try: revision_curr.contributor_name = revision['user'] except: revision_curr.contributor_name = "" #else: #revision_curr.contributor_id = 'Not Available' #revision_curr.contribur_name = 'Not Available' # Content within the revision. text_curr = text.encode('utf-8') text_curr = text_curr.lower() #revision_curr.content = text_curr # Perform comparison. vandalism = self.determineAuthorship(revision_curr, revision_prev, text_curr) if (not vandalism): # Add the current revision with all the information. self.revisions.update( {revision_curr.wikipedia_id: revision_curr}) # Update the fake revision id. i = i + 1 else: #print "---------------------------- FLAG 2" #print revision.getId() #print revision.getText() #print revision_curr = revision_prev self.spam.append(revision['sha1']) self.revision_prev = revision_prev self.revision_curr = revision_curr
def analyseWordsInSentences(self, unmatched_sentences_curr, unmatched_sentences_prev, revision_curr, possible_vandalism): global GLOBAL_ID matched_words_prev = [] unmatched_words_prev = [] # Split sentences into words. text_prev = [] for sentence_prev in unmatched_sentences_prev: for word_prev in sentence_prev.words: if (not word_prev.matched): text_prev.append(word_prev.value) unmatched_words_prev.append(word_prev) text_curr = [] for sentence_curr in unmatched_sentences_curr: splitted = Text.splitIntoWords(sentence_curr.value) text_curr.extend(splitted) sentence_curr.splitted.extend(splitted) # Edit consists of removing sentences, not adding new content. if (len(text_curr) == 0): return (matched_words_prev, False) # self.spam detection. if (possible_vandalism): density = Text.computeAvgWordFreq(text_curr, revision_curr.wikipedia_id) if (density > WORD_DENSITY): return (matched_words_prev, possible_vandalism) else: possible_vandalism = False if (len(text_prev) == 0): for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: word_curr = Word() word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.value = word #added word_curr.time = revision_curr.time #word_curr.freq.append(revision_curr.wikipedia_id) word_curr.internal_id = GLOBAL_ID sentence_curr.words.append(word_curr) GLOBAL_ID = GLOBAL_ID + 1 return (matched_words_prev, possible_vandalism) d = Differ() diff = list(d.compare(text_prev, text_curr)) for sentence_curr in unmatched_sentences_curr: for word in sentence_curr.splitted: curr_matched = False pos = 0 while (pos < len(diff)): word_diff = diff[pos] if (word == word_diff[2:]): if (word_diff[0] == ' '): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True curr_matched = True sentence_curr.words.append(word_prev) matched_words_prev.append(word_prev) diff[pos] = '' pos = len(diff) + 1 break elif (word_diff[0] == '-'): for word_prev in unmatched_words_prev: if ((not word_prev.matched) and (word_prev.value == word)): word_prev.matched = True #word_prev.deleted.append(revision_curr.wikipedia_id) matched_words_prev.append(word_prev) diff[pos] = '' break elif (word_diff[0] == '+'): curr_matched = True word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id word_curr.internal_id = GLOBAL_ID #word_curr.freq.append(revision_curr.wikipedia_id) #added word_curr.time = revision_curr.time sentence_curr.words.append(word_curr) GLOBAL_ID = GLOBAL_ID + 1 diff[pos] = '' pos = len(diff) + 1 pos = pos + 1 if not (curr_matched): word_curr = Word() word_curr.value = word word_curr.author_id = revision_curr.contributor_name word_curr.author_name = revision_curr.contributor_name word_curr.revision = revision_curr.wikipedia_id #word_curr.freq.append(revision_curr.wikipedia_id) #added word_curr.time = revision_curr.time sentence_curr.words.append(word_curr) word_curr.internal_id = GLOBAL_ID GLOBAL_ID = GLOBAL_ID + 1 return (matched_words_prev, possible_vandalism)
def analyseSentencesInParagraphs(self, unmatched_paragraphs_curr, unmatched_paragraphs_prev, revision_curr): # Containers for unmatched and matched sentences. unmatched_sentences_curr = [] unmatched_sentences_prev = [] matched_sentences_prev = [] total_sentences = 0 # Iterate over the unmatched paragraphs of the current revision. for paragraph_curr in unmatched_paragraphs_curr: # Split the current paragraph into sentences. sentences = Text.splitIntoSentences(paragraph_curr.value) # Iterate over the sentences of the current paragraph for sentence in sentences: # Create the Sentence structure. sentence = sentence.strip() sentence = ' '.join(Text.splitIntoWords(sentence)) hash_curr = Text.calculateHash(sentence) matched_curr = False total_sentences = total_sentences + 1 # Iterate over the unmatched paragraphs from the previous revision. for paragraph_prev in unmatched_paragraphs_prev: if (hash_curr in paragraph_prev.sentences.keys()): for sentence_prev in paragraph_prev.sentences[ hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not (matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append( sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[ hash_curr].append(sentence_prev) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) else: paragraph_curr.sentences.update({ sentence_prev.hash_value: [sentence_prev] }) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append( sentence_prev) if (matched_curr): break # Iterate over the hash table of sentences from old revisions. if ((not matched_curr) and (hash_curr in self.sentences_ht.keys())): for sentence_prev in self.sentences_ht[hash_curr]: if (not sentence_prev.matched): matched_one = False matched_all = True for word_prev in sentence_prev.words: if (word_prev.matched): matched_one = True else: matched_all = False if not (matched_one): sentence_prev.matched = True matched_curr = True matched_sentences_prev.append(sentence_prev) # TODO: CHECK this for word_prev in sentence_prev.words: #word_prev.freq.append(revision_curr.wikipedia_id) #word_prev.freq = word_prev.freq + 1 word_prev.matched = True # Add the sentence information to the paragraph. if (hash_curr in paragraph_curr.sentences.keys()): paragraph_curr.sentences[hash_curr].append( sentence_prev) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) else: paragraph_curr.sentences.update({ sentence_prev.hash_value: [sentence_prev] }) paragraph_curr.ordered_sentences.append( sentence_prev.hash_value) break elif (matched_all): sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) # If the sentence did not match, then include in the container of unmatched sentences for further analysis. if (not matched_curr): sentence_curr = Sentence() sentence_curr.value = sentence sentence_curr.hash_value = hash_curr paragraph_curr.ordered_sentences.append( sentence_curr.hash_value) if (sentence_curr.hash_value in paragraph_curr.sentences.keys()): paragraph_curr.sentences[ sentence_curr.hash_value].append(sentence_curr) else: paragraph_curr.sentences.update( {sentence_curr.hash_value: [sentence_curr]}) unmatched_sentences_curr.append(sentence_curr) # Identify the unmatched sentences in the previous paragraph revision. for paragraph_prev in unmatched_paragraphs_prev: for sentence_prev_hash in paragraph_prev.ordered_sentences: for sentence_prev in paragraph_prev.sentences[ sentence_prev_hash]: if (not sentence_prev.matched): unmatched_sentences_prev.append(sentence_prev) sentence_prev.matched = True matched_sentences_prev.append(sentence_prev) return (unmatched_sentences_curr, unmatched_sentences_prev, matched_sentences_prev, total_sentences)
def analyseParagraphsInRevision(self, revision_curr, revision_prev, text_curr): # Containers for unmatched and matched paragraphs. unmatched_paragraphs_curr = [] unmatched_paragraphs_prev = [] matched_paragraphs_prev = [] # Split the text of the current into paragraphs. paragraphs = Text.splitIntoParagraphs(text_curr) # Iterate over the paragraphs of the current version. for paragraph in paragraphs: # Build Paragraph structure and calculate hash value. paragraph = paragraph.strip() hash_curr = Text.calculateHash(paragraph) matched_curr = False # If the paragraph is in the previous revision, # update the authorship information and mark both paragraphs as matched (also in HT). if (hash_curr in revision_prev.ordered_paragraphs): for paragraph_prev in revision_prev.paragraphs[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys( ): for sentence_prev in paragraph_prev.sentences[ hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[ paragraph_prev.hash_value].append( paragraph_prev) revision_curr.ordered_paragraphs.append( paragraph_prev.hash_value) else: revision_curr.paragraphs.update( {paragraph_prev.hash_value: [paragraph_prev]}) revision_curr.ordered_paragraphs.append( paragraph_prev.hash_value) break # If the paragraph is not in the previous revision, but it is in an older revision # update the authorship information and mark both paragraphs as matched. if ((not matched_curr) and (hash_curr in self.paragraphs_ht)): for paragraph_prev in self.paragraphs_ht[hash_curr]: if (not paragraph_prev.matched): matched_curr = True paragraph_prev.matched = True matched_paragraphs_prev.append(paragraph_prev) # TODO: added this (CHECK). for hash_sentence_prev in paragraph_prev.sentences.keys( ): for sentence_prev in paragraph_prev.sentences[ hash_sentence_prev]: sentence_prev.matched = True for word_prev in sentence_prev.words: #word_prev.freq = word_prev.freq + 1 #word_prev.freq.append(revision_curr.wikipedia_id) word_prev.matched = True # Add paragraph to current revision. if (hash_curr in revision_curr.paragraphs.keys()): revision_curr.paragraphs[ paragraph_prev.hash_value].append( paragraph_prev) revision_curr.ordered_paragraphs.append( paragraph_prev.hash_value) else: revision_curr.paragraphs.update( {paragraph_prev.hash_value: [paragraph_prev]}) revision_curr.ordered_paragraphs.append( paragraph_prev.hash_value) break # If the paragraph did not match with previous revisions, # add to container of unmatched paragraphs for further analysis. if (not matched_curr): paragraph_curr = Paragraph() paragraph_curr.hash_value = Text.calculateHash(paragraph) paragraph_curr.value = paragraph revision_curr.ordered_paragraphs.append( paragraph_curr.hash_value) if (paragraph_curr.hash_value in revision_curr.paragraphs.keys()): revision_curr.paragraphs[paragraph_curr.hash_value].append( paragraph_curr) else: revision_curr.paragraphs.update( {paragraph_curr.hash_value: [paragraph_curr]}) unmatched_paragraphs_curr.append(paragraph_curr) # Identify unmatched paragraphs in previous revision for further analysis. for paragraph_prev_hash in revision_prev.ordered_paragraphs: for paragraph_prev in revision_prev.paragraphs[ paragraph_prev_hash]: if (not paragraph_prev.matched): unmatched_paragraphs_prev.append(paragraph_prev) return (unmatched_paragraphs_curr, unmatched_paragraphs_prev, matched_paragraphs_prev)