def set_image(self, image): """ Set image to be used for source finding. Parameters ---------- image: numpy.ndarray, str When setting an image either a `numpy.ndarray` of image data or a string file name is acceptable. Image file name may be followed by an extension specification such as ``'file1.fits[1]'`` or ``'file1.fits[(sci,1)]'`` (by default, the first image-like extension will be used). """ self._image = image self._image_ext = None if isinstance(image, str): files = parseat.parse_cs_line(image, default_ext='*', clobber=False, fnamesOnly=False, doNotOpenDQ=True, im_fmode='readonly', dq_fmode='readonly', msk_fmode='readonly', logfile=None, verbose=False) if len(files) > 1: for f in files: f.release_all_images() raise ValueError("Only a single file can be specified as " "an image.") # get extension number self._image_ext = files[0].image.hdu.index_of(files[0].fext[0]) files[0].release_all_images()
def photeq(files='*_flt.fits', sciext='SCI', errext='ERR', ref_phot=None, ref_phot_ext=None, phot_kwd='PHOTFLAM', aux_phot_kwd='PHOTFNU', search_primary=True, readonly=True, clobber=False, logfile='photeq.log'): """ Adjust data values of images by equalizing each chip's PHOTFLAM value to a single common value so that all chips can be treated equally by ``AstroDrizzle``. Parameters ---------- files : str (Default = ``'*_flt.fits'``) A string containing one of the following: * a comma-separated list of valid science image file names, e.g.: ``'j1234567q_flt.fits, j1234568q_flt.fits'``; * an @-file name, e.g., ``'@files_to_match.txt'``. See notes section for details on the format of the @-files. .. note:: **Valid science image file names** are: * file names of existing FITS, GEIS, or WAIVER FITS files; * partial file names containing wildcard characters, e.g., ``'*_flt.fits'``; * Association (ASN) tables (must have ``_asn``, or ``_asc`` suffix), e.g., ``'j12345670_asn.fits'``. sciext : str (Default = 'SCI') Extension *name* of extensions whose data and/or headers should be corrected. errext : str (Default = 'ERR') Extension *name* of the extensions containing corresponding error arrays. Error arrays are corrected in the same way as science data. ref_phot : float, None (Default = None) A number indicating the new value of PHOTFLAM or PHOTFNU (set by 'phot_kwd') to which the data should be adjusted. ref_phot_ext : int, str, tuple, None (Default = None) Extension from which the `photeq` should get the reference photometric value specified by the `phot_kwd` parameter. This parameter is ignored if `ref_phot` **is not** `None`. When `ref_phot_ext` is `None`, then the reference inverse sensitivity value will be picked from the first `sciext` of the first input image containing `phot_kwd`. phot_kwd : str (Default = 'PHOTFLAM') Specifies the primary keyword which contains inverse sensitivity (e.g., PHOTFLAM). It is used to compute conversion factors by which data should be rescaled. aux_phot_kwd : str, None, list of str (Default = 'PHOTFNU') Same as `phot_kwd` but describes *other* photometric keyword(s) that should be corrected by inverse of the scale factor used to correct data. These keywords are *not* used to compute conversion factors. Multiple keywords can be specified as a Python list of strings: ``['PHOTFNU', 'PHOTOHMY']``. .. note:: If specifying multiple secondary photometric keywords in the TEAL interface, use a comma-separated list of keywords. search_primary : bool (Default = True) Specifies whether to first search the primary header for the presence of `phot_kwd` keyword and compute conversion factor based on that value. This is (partially) ignored when `ref_phot` is not `None` in the sense that the value specified by `ref_phot` will be used as the reference *but* in all images primary will be searched for `phot_kwd` and `aux_phot_kwd` and those values will be corrected (if ``search_primary=True``). readonly : bool (Default = True) If `True`, `photeq` will not modify input files (nevertheless, it will convert input GEIS or WAVERED FITS files to MEF and could overwrite existing MEF files if `clobber` is set to `True`). The (console or log file) output however will be identical to the case when ``readonly=False`` and it can be examined before applying these changes to input files. clobber : bool (Default = False) Overwrite existing MEF files when converting input WAVERED FITS or GEIS to MEF. logfile : str, None (Default = 'photeq.log') File name of the log file. Notes ----- By default, `photeq` will search for the first inverse sensitivity value (given by the header keyword specified by the `phot_kwd` parameter, e.g., PHOTFLAM or PHOTFNU) found in the input images and it will equalize all other images to this reference value. It is possible to tell `photeq` to look for the reference inverse sensitivity value only in a specific extension of input images, e.g.: 3, ('sci',3), etc. This can be done by setting `ref_phot_ext` to a specific extension. This may be useful, for example, for WFPC2 images: WF3 chip was one of the better calibrated chips, and so, if one prefers to have inverse sensitivities equalized to the inverse sensitivity of the WF3 chip, one can set ``ref_phot_ext=3``. Alternatively, one can provide their own reference inverse sensitivity value to which all other images should be "equalized" through the parameter `ref_phot`. .. note:: Default parameter values (except for `files`, `readonly`, and `clobber`) should be acceptable for most HST images. .. warning:: If images are intended to be used with ``AstroDrizzle``, it is recommended that sky background measurement be performed on "equalized" images as the `photeq` is not aware of sky user keyword in the image headers and thus it cannot correct sky values already recorded in the headers. Examples -------- #. In most cases the default parameters should suffice: >>> from drizzlepac import photeq >>> photeq.photeq(files='*_flt.fits', readonly=False) #. If the re-calibration needs to be done on PHOTFNU rather than PHOTFLAM, then: >>> photeq.photeq(files='*_flt.fits', ref_phot='PHOTFNU', ... aux_phot_kwd='PHOTFLAM') #. If for WFPC2 data one desires that PHOTFLAM from WF3 be used as the reference in WFPC2 images, then: >>> photeq.photeq(files='*_flt.fits', ref_phot_ext=3) # or ('sci',3) """ # Time it runtime_begin = datetime.now() # check that input file name is a string: if not isinstance(files, str): raise TypeError("Argument 'files' must be a comma-separated list of " " file names") # Set-up log files: if isinstance(logfile, str): # first, in case there are any "leftover" file handlers, # close and remove them: for h in _log.handlers: if h is not _sh_log and isinstance(h, logging.FileHandler): h.close() _log.removeHandler(h) # create file handler: log_formatter = logging.Formatter('[%(levelname)s:] %(message)s') log_file_handler = logging.FileHandler(logfile) log_file_handler.setFormatter(log_formatter) # add log_file_handler to logger _log.addHandler(log_file_handler) elif logfile is not None: raise TypeError("Unsupported 'logfile' type") # BEGIN: _mlinfo("***** {0} started on {1}".format(__taskname__, runtime_begin)) _mlinfo(" Version {0} ({1})".format(__version__, __version_date__)) # check that extension names are strings (or None for error ext): if sciext is None: sci_ext4parse = '*' ext2get = None else: if not isinstance(sciext, str): raise TypeError("Argument 'sciext' must be a string or None") sciext = sciext.strip() if sciext.upper() == 'PRIMARY': sciext = sciext.upper() ext2get = (sciext, 1) else: ext2get = (sciext, '*') sci_ext4parse = ext2get if errext is not None and not isinstance(errext, str): raise TypeError("Argument 'errext' must be a string or None") # check that phot_kwd is supported: if not isinstance(phot_kwd, str): raise TypeError("Argument 'phot_kwd' must be a string") phot_kwd = phot_kwd.strip().upper() # check that ref_phot_ext has correct type: if ref_phot_ext is not None and not \ (isinstance(ref_phot_ext, int) or isinstance(ref_phot_ext, str) \ or (isinstance(ref_phot_ext, tuple) and len(ref_phot_ext) == 2 \ and isinstance(ref_phot_ext[0], str) and \ isinstance(ref_phot_ext[1], int))): raise TypeError("Unsupported 'ref_phot_ext' type") if isinstance(ref_phot_ext, str): ref_phot_ext = (ref_phot_ext, 1) if aux_phot_kwd is None: aux_phot_kwd = [] elif isinstance(aux_phot_kwd, str): aux_phot_kwd = [aux_phot_kwd.strip().upper()] if phot_kwd == aux_phot_kwd: raise ValueError("Auxiliary photometric keyword must be different " "from the main photometric keyword 'phot_kwd'.") elif hasattr(aux_phot_kwd, '__iter__'): if not all([isinstance(phot, str) for phot in aux_phot_kwd]): raise TypeError( "Argument 'aux_phot_kwd' must be a string, list of " "strings, or None") aux_phot_kwd = [phot.strip().upper() for phot in aux_phot_kwd] if ref_phot in aux_phot_kwd: raise ValueError("Auxiliary photometric keyword(s) must be " "different from the main photometric keyword " "'phot_kwd'.") else: raise TypeError("Argument 'aux_phot_kwd' must be a string, list of " "strings, or None") # read input file list: fl = parseat.parse_cs_line(csline=files, default_ext=sci_ext4parse, im_fmode='readonly' if readonly else 'update', clobber=clobber, fnamesOnly=True, doNotOpenDQ=True) # check if user supplied file extensions, set them to the sciext, # and warn that they will be ignored: for f in fl: if f.count > 1 or f.fext[0] != sci_ext4parse: _mlwarn("WARNING: Extension specifications for file {:s} " "will be ignored. Using all {:s} extensions instead." .format(f.image, 'image-like' if sciext is None else \ "{:s}".format(utils.ext2str(sciext, default_extver=None)))) # find the reference PHOTFLAM/PHOTNU: flc = fl[:] ref_hdu = None ref_ext = None ref_user = True if ref_phot is None: ref_user = False for f in flc: f.convert2ImageRef() # get primary hdu: pri_hdu = f.image.hdu[0] # find all valid extensions: if ref_phot_ext is None: if sciext == 'PRIMARY': extnum = [0] else: extnum = utils.get_ext_list(f.image, sciext) is_pri_hdu = [f.image.hdu[ext] is pri_hdu for ext in extnum] # if necessary, add primary header to the hdu list: if search_primary: try: pri_index = is_pri_hdu.index(True) extnum.insert(0, extnum.pop(pri_index)) except ValueError: extnum.insert(0, 0) else: extnum = [ref_phot_ext] for ext in extnum: hdu = f.image.hdu[ext] if phot_kwd in hdu.header: ref_phot = hdu.header[phot_kwd] ref_ext = ext ref_hdu = hdu break if ref_phot is None: _mlwarn("WARNING: Could not find specified inverse " " sensitivity keyword '{:s}'\n" " in any of the {} extensions of file '{}'.\n" " This input file will be ignored." .format(phot_kwd, 'image-like' if sciext is None else \ "{:s}".format(utils.ext2str(sciext, default_extver=None)), os.path.basename(f.image.original_fname))) f.release_all_images() fl.remove(f) else: break if ref_phot is None: raise RuntimeError( "Could not find the inverse sensitivity keyword " "'{:s}' in the specified headers of " "the input image(s).\nCannot continue.".format(phot_kwd)) aux_phot_kwd_list = ','.join(aux_phot_kwd) _mlinfo("\nPRIMARY PHOTOMETRIC KEYWORD: {:s}".format(phot_kwd)) _mlinfo("SECONDARY PHOTOMETRIC KEYWORD(S): {:s}".format( aux_phot_kwd_list if aux_phot_kwd_list else 'None')) if ref_user: _mlinfo("REFERENCE VALUE PROVIDED BY USER: '******'={}\n".format( phot_kwd, ref_phot)) else: _mlinfo("REFERENCE VALUE FROM FILE: '{:s}[{:s}]'\n".format( os.path.basename(f.image.original_fname), utils.ext2str(ref_ext))) _mlinfo("REFERENCE '{:s}' VALUE IS: {}".format(phot_kwd, ref_phot)) # equalize PHOTFLAM/PHOTNU for f in fl: # open the file if necessary: if f.fnamesOnly: _mlinfo("\nProcessing file '{:s}'".format(f.image)) f.convert2ImageRef() else: _mlinfo("\nProcessing file '{:s}'".format(f.image.original_fname)) # first, see if photflam is in the primary header and save this value: pri_conv = None if search_primary: whdu = f.image.hdu[0] if phot_kwd in whdu.header: _mlinfo(" * Primary header:") if whdu is ref_hdu: pri_conv = 1.0 _mlinfo( " - '{}' = {} found in the primary header.".format( phot_kwd, whdu.header[phot_kwd])) _mlinfo(" - Data conversion factor based on primary " "header: {}".format(pri_conv)) else: _mlinfo(" - '{}' found in the primary header.".format( phot_kwd)) pri_conv = whdu.header[phot_kwd] / ref_phot _mlinfo(" - Setting {:s} in the primary header to {} " "(old value was {})".format( phot_kwd, ref_phot, whdu.header[phot_kwd])) _mlinfo(" - Data conversion factor based on primary " "header: {}".format(pri_conv)) whdu.header[phot_kwd] = ref_phot # correct the "other" photometric keyword, if present: if pri_conv is not None and whdu is not ref_hdu: for aux_kwd in aux_phot_kwd: if aux_kwd in whdu.header: old_aux_phot = whdu.header[aux_kwd] new_aux_phot = old_aux_phot / pri_conv whdu.header[aux_kwd] = new_aux_phot _mlinfo(" - Setting {:s} in the primary header " "to {} (old value was {})".format( aux_kwd, new_aux_phot, old_aux_phot)) # process data and error arrays when 'sciext' was specifically set to # 'PRIMARY': if sciext == 'PRIMARY' and pri_conv is not None: has_data = (hasattr(whdu, 'data') and whdu.data is not None) # correct data: if has_data: if np.issubdtype(whdu.data.dtype, np.floating): whdu.data *= pri_conv _mlinfo( " - Data have been multiplied by {}".format( pri_conv)) else: _mlwarn("WARNING: Data not converted because it is of " "non-floating point type.") # correct error array: if errext is not None: eext = (errext, 1) try: whdu = f.image.hdu[eext] except KeyError: _mlwarn( " - WARNING: Error extension {:s} not found.". format(utils.ext2str(eext))) f.release_all_images() continue if hasattr(whdu, 'data') and whdu.data is not None: if np.issubdtype(whdu.data.dtype, np.floating): whdu.data *= pri_conv _mlinfo(" - Error array (ext={}) has been " "multiplied by {}".format(eext, pri_conv)) else: _mlinfo(" - Error array in extension {:s} " "contains non-floating point data.\n" " Skipping this extension".format( utils.ext2str(ext))) f.release_all_images() continue # find all valid extensions: extnum = utils.get_ext_list(f.image, sciext) for ext in extnum: whdu = f.image.hdu[ext] conv = None if whdu is ref_hdu: _mlinfo(" * EXT: {} - This is the \"reference\" extension.\n" " Nothing to do. Skipping this extension...". format(ext)) continue has_data = (hasattr(whdu, 'data') and whdu.data is not None) if has_data and not np.issubdtype(whdu.data.dtype, np.floating): _mlinfo(" * EXT: {} contains non-floating point data. " "Skipping this extension".format(ext)) # find all auxiliary photometric keywords present in the header: paux = [aux_kwd for aux_kwd in aux_phot_kwd if aux_kwd \ in whdu.header] if phot_kwd in whdu.header: _mlinfo(" * EXT: {}".format(ext)) old_phot = whdu.header[phot_kwd] conv = old_phot / ref_phot _mlinfo(" - Setting {:s} to {} (old value was {})".format( phot_kwd, ref_phot, old_phot)) whdu.header[phot_kwd] = ref_phot _mlinfo( " - Computed conversion factor for data: {}".format( conv)) elif pri_conv is None: _mlinfo(" * EXT: {}".format(ext)) _mlinfo(" - '{:s} not found. Skipping this extension...". format(phot_kwd)) continue else: _mlinfo(" * EXT: {}".format(ext)) # if paux: # print("ERROR: Primary photometric keyword ('{:s}') is " # "missing but\n the secondary keywords ('{:s}') " # "are present. This extension cannot be processed." # .format(phot_kwd, ','.join(paux))) # continue _mlinfo(" - '{:s} not found. Using conversion factor " "based\n on the primary header: {}".format( phot_kwd, pri_conv)) conv = pri_conv # correct the "other" photometric keyword, if present: if conv is not None: for aux_kwd in paux: old_aux_phot = whdu.header[aux_kwd] new_aux_phot = old_aux_phot / conv whdu.header[aux_kwd] = new_aux_phot _mlinfo( " - Setting {:s} to {} (old value was {})".format( aux_kwd, new_aux_phot, old_aux_phot)) # correct data: if has_data: if conv is None: _mlinfo(" * EXT: {}".format(ext)) if np.issubdtype(whdu.data.dtype, np.floating): whdu.data *= conv _mlinfo( " - Data have been multiplied by {}".format(conv)) else: _mlinfo("WARNING: Non-floating point data. Data cannot " "be re-scaled.") # correct error array: if errext is not None and isinstance(ext, tuple) and len(ext) == 2: eext = (errext, ext[1]) try: whdu = f.image.hdu[eext] except KeyError: continue if hasattr(whdu, 'data') and whdu.data is not None: if np.issubdtype(whdu.data.dtype, np.floating): whdu.data *= conv _mlinfo(" - Error array (ext={}) has been " "multiplied by {}".format(eext, conv)) else: _mlinfo(" - Error array in extension {:s} " "contains non-floating point data.\n" " Skipping this extension".format( utils.ext2str(ext))) f.release_all_images() _mlinfo("\nDone.") if readonly: _mlinfo("\nNOTE: '{:s}' was run in READONLY mode\n" " and input image(s)' content WAS NOT MODIFIED.".format( __taskname__)) # close all log file handlers: for h in _log.handlers: if h is not _sh_log and isinstance(h, logging.FileHandler): h.close() _log.removeHandler(h)
def photeq(files='*_flt.fits', sciext='SCI', errext='ERR', ref_phot=None, ref_phot_ext=None, phot_kwd='PHOTFLAM', aux_phot_kwd='PHOTFNU', search_primary=True, readonly=True, clobber=False, logfile='photeq.log'): """ Adjust data values of images by equalizing each chip's PHOTFLAM value to a single common value so that all chips can be treated equally by `AstroDrizzle`. Parameters ---------- files : str (Default = ``'*_flt.fits'``) A string containing one of the following: * a comma-separated list of valid science image file names, e.g.: ``'j1234567q_flt.fits, j1234568q_flt.fits'``; * an @-file name, e.g., ``'@files_to_match.txt'``. See notes section for details on the format of the @-files. .. note:: **Valid science image file names** are: * file names of existing FITS, GEIS, or WAIVER FITS files; * partial file names containing wildcard characters, e.g., ``'*_flt.fits'``; * Association (ASN) tables (must have ``_asn``, or ``_asc`` suffix), e.g., ``'j12345670_asn.fits'``. sciext : str (Default = 'SCI') Extension *name* of extensions whose data and/or headers should be corrected. errext : str (Default = 'ERR') Extension *name* of the extensions containing corresponding error arrays. Error arrays are corrected in the same way as science data. ref_phot : float, None (Default = None) A number indicating the new value of PHOTFLAM or PHOTFNU (set by 'phot_kwd') to which the data should be adjusted. ref_phot_ext : int, str, tuple, None (Default = None) Extension from which the `photeq` should get the reference photometric value specified by the `phot_kwd` parameter. This parameter is ignored if `ref_phot` **is not** `None`. When `ref_phot_ext` is `None`, then the reference inverse sensitivity value will be picked from the first `sciext` of the first input image containing `phot_kwd`. phot_kwd : str (Default = 'PHOTFLAM') Specifies the primary keyword which contains inverse sensitivity (e.g., PHOTFLAM). It is used to compute conversion factors by which data should be rescaled. aux_phot_kwd : str, None, list of str (Default = 'PHOTFNU') Same as `phot_kwd` but describes *other* photometric keyword(s) that should be corrected by inverse of the scale factor used to correct data. These keywords are *not* used to compute conversion factors. Multiple keywords can be specified as a Python list of strings: ``['PHOTFNU', 'PHOTOHMY']``. .. note:: If specifying multiple secondary photometric keywords in the TEAL interface, use a comma-separated list of keywords. search_primary : bool (Default = True) Specifies whether to first search the primary header for the presence of `phot_kwd` keyword and compute conversion factor based on that value. This is (partially) ignored when `ref_phot` is not `None` in the sense that the value specified by `ref_phot` will be used as the reference *but* in all images primary will be searched for `phot_kwd` and `aux_phot_kwd` and those values will be corrected (if ``search_primary=True``). readonly : bool (Default = True) If `True`, `photeq` will not modify input files (nevertheless, it will convert input GEIS or WAVERED FITS files to MEF and could overwrite existing MEF files if `clobber` is set to `True`). The (console or log file) output however will be identical to the case when ``readonly=False`` and it can be examined before applying these changes to input files. clobber : bool (Default = False) Overwrite existing MEF files when converting input WAVERED FITS or GEIS to MEF. logfile : str, None (Default = 'photeq.log') File name of the log file. Notes ----- By default, `photeq` will search for the first inverse sensitivity value (given by the header keyword specified by the `phot_kwd` parameter, e.g., PHOTFLAM or PHOTFNU) found in the input images and it will equalize all other images to this reference value. It is possible to tell `photeq` to look for the reference inverse sensitivity value only in a specific extension of input images, e.g.: 3, ('sci',3), etc. This can be done by setting `ref_phot_ext` to a specific extension. This may be useful, for example, for WFPC2 images: WF3 chip was one of the better calibrated chips, and so, if one prefers to have inverse sensitivities equalized to the inverse sensitivity of the WF3 chip, one can set ``ref_phot_ext=3``. Alternatively, one can provide their own reference inverse sensitivity value to which all other images should be "equalized" through the parameter `ref_phot`. .. note:: Default parameter values (except for `files`, `readonly`, and `clobber`) should be acceptable for most HST images. .. warning:: If images are intended to be used with `AstroDrizzle`, it is recommended that sky background measurement be performed on "equalized" images as the `photeq` is not aware of sky user keyword in the image headers and thus it cannot correct sky values already recorded in the headers. Examples -------- #. In most cases the default parameters should suffice: >>> from drizzlepac import photeq >>> photeq.photeq(files='*_flt.fits', readonly=False) #. If the re-calibration needs to be done on PHOTFNU rather than PHOTFLAM, then: >>> photeq.photeq(files='*_flt.fits', ref_phot='PHOTFNU', ... aux_phot_kwd='PHOTFLAM') #. If for WFPC2 data one desires that PHOTFLAM from WF3 be used as the reference in WFPC2 images, then: >>> photeq.photeq(files='*_flt.fits', ref_phot_ext=3) # or ('sci',3) """ # Time it runtime_begin = datetime.now() # check that input file name is a string: if not isinstance(files, str): raise TypeError("Argument 'files' must be a comma-separated list of " " file names") # Set-up log files: if isinstance(logfile, str): # first, in case there are any "leftover" file handlers, # close and remove them: for h in _log.handlers: if h is not _sh_log and isinstance(h, logging.FileHandler): h.close() _log.removeHandler(h) # create file handler: log_formatter = logging.Formatter('[%(levelname)s:] %(message)s') log_file_handler = logging.FileHandler(logfile) log_file_handler.setFormatter(log_formatter) # add log_file_handler to logger _log.addHandler(log_file_handler) elif logfile is not None: raise TypeError("Unsupported 'logfile' type") # BEGIN: _mlinfo("***** {0} started on {1}".format(__taskname__, runtime_begin)) _mlinfo(" Version {0} ({1})".format(__version__, __vdate__)) # check that extension names are strings (or None for error ext): if sciext is None: sci_ext4parse = '*' ext2get = None else: if not isinstance(sciext, str): raise TypeError("Argument 'sciext' must be a string or None") sciext = sciext.strip() if sciext.upper() == 'PRIMARY': sciext = sciext.upper() ext2get = (sciext, 1) else: ext2get = (sciext, '*') sci_ext4parse = ext2get if errext is not None and not isinstance(errext, str): raise TypeError("Argument 'errext' must be a string or None") # check that phot_kwd is supported: if not isinstance(phot_kwd, str): raise TypeError("Argument 'phot_kwd' must be a string") phot_kwd = phot_kwd.strip().upper() # check that ref_phot_ext has correct type: if ref_phot_ext is not None and not \ (isinstance(ref_phot_ext, int) or isinstance(ref_phot_ext, str) \ or (isinstance(ref_phot_ext, tuple) and len(ref_phot_ext) == 2 \ and isinstance(ref_phot_ext[0], str) and \ isinstance(ref_phot_ext[1], int))): raise TypeError("Unsupported 'ref_phot_ext' type") if isinstance(ref_phot_ext, str): ref_phot_ext = (ref_phot_ext, 1) if aux_phot_kwd is None: aux_phot_kwd = [] elif isinstance(aux_phot_kwd, str): aux_phot_kwd = [aux_phot_kwd.strip().upper()] if phot_kwd == aux_phot_kwd: raise ValueError("Auxiliary photometric keyword must be different " "from the main photometric keyword 'phot_kwd'.") elif hasattr(aux_phot_kwd, '__iter__'): if not all([isinstance(phot, str) for phot in aux_phot_kwd]): raise TypeError("Argument 'aux_phot_kwd' must be a string, list of " "strings, or None") aux_phot_kwd = [phot.strip().upper() for phot in aux_phot_kwd] if ref_phot in aux_phot_kwd: raise ValueError("Auxiliary photometric keyword(s) must be " "different from the main photometric keyword " "'phot_kwd'.") else: raise TypeError("Argument 'aux_phot_kwd' must be a string, list of " "strings, or None") # read input file list: fl = parseat.parse_cs_line(csline=files, default_ext=sci_ext4parse, im_fmode='readonly' if readonly else 'update', clobber=clobber, fnamesOnly=True, doNotOpenDQ=True) # check if user supplied file extensions, set them to the sciext, # and warn that they will be ignored: for f in fl: if f.count > 1 or f.fext[0] != sci_ext4parse: _mlwarn("WARNING: Extension specifications for file {:s} " "will be ignored. Using all {:s} extensions instead." .format(f.image, 'image-like' if sciext is None else \ "{:s}".format(utils.ext2str(sciext, default_extver=None)))) # find the reference PHOTFLAM/PHOTNU: flc = fl[:] ref_hdu = None ref_ext = None ref_user = True if ref_phot is None: ref_user = False for f in flc: f.convert2ImageRef() # get primary hdu: pri_hdu = f.image.hdu[0] # find all valid extensions: if ref_phot_ext is None: if sciext == 'PRIMARY': extnum = [0] else: extnum = utils.get_ext_list(f.image, sciext) is_pri_hdu = [f.image.hdu[ext] is pri_hdu for ext in extnum] # if necessary, add primary header to the hdu list: if search_primary: try: pri_index = is_pri_hdu.index(True) extnum.insert(0, extnum.pop(pri_index)) except ValueError: extnum.insert(0, 0) else: extnum = [ref_phot_ext] for ext in extnum: hdu = f.image.hdu[ext] if phot_kwd in hdu.header: ref_phot = hdu.header[phot_kwd] ref_ext = ext ref_hdu = hdu break if ref_phot is None: _mlwarn("WARNING: Could not find specified inverse " " sensitivity keyword '{:s}'\n" " in any of the {} extensions of file '{}'.\n" " This input file will be ignored." .format(phot_kwd, 'image-like' if sciext is None else \ "{:s}".format(utils.ext2str(sciext, default_extver=None)), os.path.basename(f.image.original_fname))) f.release_all_images() fl.remove(f) else: break if ref_phot is None: raise RuntimeError("Could not find the inverse sensitivity keyword " "'{:s}' in the specified headers of " "the input image(s).\nCannot continue." .format(phot_kwd)) aux_phot_kwd_list = ','.join(aux_phot_kwd) _mlinfo("\nPRIMARY PHOTOMETRIC KEYWORD: {:s}".format(phot_kwd)) _mlinfo("SECONDARY PHOTOMETRIC KEYWORD(S): {:s}" .format(aux_phot_kwd_list if aux_phot_kwd_list else 'None')) if ref_user: _mlinfo("REFERENCE VALUE PROVIDED BY USER: '******'={}\n" .format(phot_kwd, ref_phot)) else: _mlinfo("REFERENCE VALUE FROM FILE: '{:s}[{:s}]'\n" .format(os.path.basename(f.image.original_fname), utils.ext2str(ref_ext))) _mlinfo("REFERENCE '{:s}' VALUE IS: {}".format(phot_kwd, ref_phot)) # equalize PHOTFLAM/PHOTNU for f in fl: # open the file if necessary: if f.fnamesOnly: _mlinfo("\nProcessing file '{:s}'".format(f.image)) f.convert2ImageRef() else: _mlinfo("\nProcessing file '{:s}'".format(f.image.original_fname)) # first, see if photflam is in the primary header and save this value: pri_conv = None if search_primary: whdu = f.image.hdu[0] if phot_kwd in whdu.header: _mlinfo(" * Primary header:") if whdu is ref_hdu: pri_conv = 1.0 _mlinfo(" - '{}' = {} found in the primary header." .format(phot_kwd, whdu.header[phot_kwd])) _mlinfo(" - Data conversion factor based on primary " "header: {}".format(pri_conv)) else: _mlinfo(" - '{}' found in the primary header." .format(phot_kwd)) pri_conv = whdu.header[phot_kwd] / ref_phot _mlinfo(" - Setting {:s} in the primary header to {} " "(old value was {})" .format(phot_kwd, ref_phot, whdu.header[phot_kwd])) _mlinfo(" - Data conversion factor based on primary " "header: {}".format(pri_conv)) whdu.header[phot_kwd] = ref_phot # correct the "other" photometric keyword, if present: if pri_conv is not None and whdu is not ref_hdu: for aux_kwd in aux_phot_kwd: if aux_kwd in whdu.header: old_aux_phot = whdu.header[aux_kwd] new_aux_phot = old_aux_phot / pri_conv whdu.header[aux_kwd] = new_aux_phot _mlinfo(" - Setting {:s} in the primary header " "to {} (old value was {})" .format(aux_kwd, new_aux_phot, old_aux_phot)) # process data and error arrays when 'sciext' was specifically set to # 'PRIMARY': if sciext == 'PRIMARY' and pri_conv is not None: has_data = (hasattr(whdu, 'data') and whdu.data is not None) # correct data: if has_data: if np.issubdtype(whdu.data.dtype, np.float): whdu.data *= pri_conv _mlinfo(" - Data have been multiplied by {}" .format(pri_conv)) else: _mlwarn("WARNING: Data not converted because it is of " "non-floating point type.") # correct error array: if errext is not None: eext = (errext, 1) try: whdu = f.image.hdu[eext] except KeyError: _mlwarn(" - WARNING: Error extension {:s} not found." .format(utils.ext2str(eext))) f.release_all_images() continue if hasattr(whdu, 'data') and whdu.data is not None: if np.issubdtype(whdu.data.dtype, np.float): whdu.data *= pri_conv _mlinfo(" - Error array (ext={}) has been " "multiplied by {}".format(eext, pri_conv)) else: _mlinfo(" - Error array in extension {:s} " "contains non-floating point data.\n" " Skipping this extension" .format(utils.ext2str(ext))) f.release_all_images() continue # find all valid extensions: extnum = utils.get_ext_list(f.image, sciext) for ext in extnum: whdu = f.image.hdu[ext] conv = None if whdu is ref_hdu: _mlinfo(" * EXT: {} - This is the \"reference\" extension.\n" " Nothing to do. Skipping this extension..." .format(ext)) continue has_data = (hasattr(whdu, 'data') and whdu.data is not None) if has_data and not np.issubdtype(whdu.data.dtype, np.float): _mlinfo(" * EXT: {} contains non-floating point data. " "Skipping this extension".format(ext)) # find all auxiliary photometric keywords present in the header: paux = [aux_kwd for aux_kwd in aux_phot_kwd if aux_kwd \ in whdu.header] if phot_kwd in whdu.header: _mlinfo(" * EXT: {}".format(ext)) old_phot = whdu.header[phot_kwd] conv = old_phot / ref_phot _mlinfo(" - Setting {:s} to {} (old value was {})" .format(phot_kwd, ref_phot, old_phot)) whdu.header[phot_kwd] = ref_phot _mlinfo(" - Computed conversion factor for data: {}" .format(conv)) elif pri_conv is None: _mlinfo(" * EXT: {}".format(ext)) _mlinfo(" - '{:s} not found. Skipping this extension..." .format(phot_kwd)) continue else: _mlinfo(" * EXT: {}".format(ext)) # if paux: # print("ERROR: Primary photometric keyword ('{:s}') is " # "missing but\n the secondary keywords ('{:s}') " # "are present. This extension cannot be processed." # .format(phot_kwd, ','.join(paux))) # continue _mlinfo(" - '{:s} not found. Using conversion factor " "based\n on the primary header: {}" .format(phot_kwd, pri_conv)) conv = pri_conv # correct the "other" photometric keyword, if present: if conv is not None: for aux_kwd in paux: old_aux_phot = whdu.header[aux_kwd] new_aux_phot = old_aux_phot / conv whdu.header[aux_kwd] = new_aux_phot _mlinfo(" - Setting {:s} to {} (old value was {})" .format(aux_kwd, new_aux_phot, old_aux_phot)) # correct data: if has_data: if conv is None: _mlinfo(" * EXT: {}".format(ext)) if np.issubdtype(whdu.data.dtype, np.float): whdu.data *= conv _mlinfo(" - Data have been multiplied by {}" .format(conv)) else: _mlinfo("WARNING: Non-floating point data. Data cannot " "be re-scaled.") # correct error array: if errext is not None and isinstance(ext, tuple) and len(ext) == 2: eext = (errext, ext[1]) try: whdu = f.image.hdu[eext] except KeyError: continue if hasattr(whdu, 'data') and whdu.data is not None: if np.issubdtype(whdu.data.dtype, np.float): whdu.data *= conv _mlinfo(" - Error array (ext={}) has been " "multiplied by {}".format(eext, conv)) else: _mlinfo(" - Error array in extension {:s} " "contains non-floating point data.\n" " Skipping this extension" .format(utils.ext2str(ext))) f.release_all_images() _mlinfo("\nDone.") if readonly: _mlinfo("\nNOTE: '{:s}' was run in READONLY mode\n" " and input image(s)' content WAS NOT MODIFIED." .format(__taskname__)) # close all log file handlers: for h in _log.handlers: if h is not _sh_log and isinstance(h, logging.FileHandler): h.close() _log.removeHandler(h)
def apply_tweak(drz_file, orig_wcs_name, output_wcs_name=None, input_files=None, default_extname='SCI', **kwargs): """ Apply WCS solution recorded in drizzled file to distorted input images (``_flt.fits`` files) used to create the drizzled file. It is assumed that if input images given by ``input_files`` are drizzled together, they would produce the drizzled image given by ``drz_file`` image and with the "original" primary WCS. It is also assumed that drizzled image was aligned using ``tweakreg`` either to another image or to an external reference catalog. We will refer to the primary WCS in the drizzled image _before_ ``tweakreg`` was run as the "original" WCS and the WCS _after_ ``tweakreg`` was run as "tweaked" WCS. By comparing both "original" and "tweaked" WCS, ``apply_wcs`` computes the correction that was applied by ``tweakreg`` to the "original" WCS and converts this correction in the drizzled image frame into a correction in the input image's (``input_files``) frame that will be applied to the primary WCS of input images. If updated input images are now resampled again, they would produce an image very close to ``drz_file`` but with a primary WCS very similar to the "tweaked" WCS instead of the "original" WCS. Parameters ---------- drz_file : str File name of the drizzled image that contains both the "original" and "tweaked" WCS. Even though wildcards are allowed in the file name, their expansion must resolve to a single image file. By default, ``apply_tweak`` looks for the first image-like HDU in the drizzled image. To specify a particular extension from which to load WCS, append extension specification after the file name, for example: - ``'image_drz.fits[sci,1]'`` for first "sci" extension - ``'image_drz.fits[1]'`` for the first extension - ``'image_drz.fits[0]'`` for the primary HDU orig_wcs_name : str Name (provided by the ``WCSNAME?`` header keyword where ``?`` respesents a letter A-Z) of the "original" WCS. This is the WCS of the resampled image (obtained by drizzling all input images) _before_ this resampled image was aligned ("tweaked") to another image/catalog. If ``orig_wcs_name`` is `None`, the the original WCS _must be specified_ using ``orig_wcs_key``. When ``orig_wcs_key`` is provided, ``orig_wcs_name`` is ignored altogether. output_wcs_name : str, None Value of ``WCSNAME`` to be used to label the updated solution in the input (e.g., ``_flt.fits``) files. If left blank or ``None``, it will default to using either the current (primary) ``WCSNAME`` value from the ``drz_file`` or from the alternate WCS given by the ``tweaked_wcs_name`` or ``tweaked_wcs_key`` parameters. input_files : str, None Filenames of distorted images whose primary WCS is to be updated with the same transformation as used in the "tweaked" drizzled image. Default value of `None` indicates that input image filenames will be derived from the ``D*DATA`` keywords written out by the ``AstroDrizzle``. If they can not be found, the task will quit. ``input_files`` string can contain one of the following: * a comma-separated list of valid science image file names (see note below) and (optionally) extension specifications, e.g.: ``'j1234567q_flt.fits[1], j1234568q_flt.fits[sci,2]'``; * an @-file name, e.g., ``'@files_to_match.txt'``. .. note:: **Valid** **science** **image** **file** **names** are: * file names of existing FITS, GEIS, or WAIVER FITS files; * partial file names containing wildcard characters, e.g., ``'*_flt.fits'``; * Association (ASN) tables (must have ``_asn``, or ``_asc`` suffix), e.g., ``'j12345670_asn.fits'``. .. warning:: @-file names **MAY** **NOT** be followed by an extension specification. .. warning:: If an association table or a partial file name with wildcard characters is followed by an extension specification, it will be considered that this extension specification applies to **each** file name in the association table or **each** file name obtained after wildcard expansion of the partial file name. default_extname : str Extension name of extensions in input images whose primary WCS should be updated. This value is used only when file names provided in ``input_files`` do not contain extension specifications. Other Parameters ---------------- tweaked_wcs_name : str Name of the "tweaked" WCS. This is the WCS of the resampled image (obtained by drizzling all input images) _after_ this resampled image was aligned ("tweaked") to another image/catalog. When neither ``tweaked_wcs_name`` nor ````tweaked_wcs_key`` are not provided, ``apply_tweak`` will take the current primary WCS in the drizzled image as a "tweaked" WCS. ``tweaked_wcs_name`` is ignored when ``tweaked_wcs_key`` is provided. tweaked_wcs_key : {' ', 'A'-'Z'} Same as ``tweaked_wcs_name`` except it specifies a WCS by key instead of name. When provided, ``tweaked_wcs_name`` is ignored. orig_wcs_key : {' ', 'A'-'Z'} Same as ``orig_wcs_name`` except it specifies a WCS by key instead of name. When provided, ``orig_wcs_name`` is ignored. Notes ----- The algorithm used by this function is based on linearization of the exact compound operator that converts input image coordinates to the coordinates (in the input image) that would result in alignment with the new drizzled image WCS. .. warning:: Parameters ``orig_wcs_name`` and ``tweaked_wcs_name`` (or their "key" equivalents) allow computation of transformation between *any two WCS* in the drizzled image and application of this transformation to the primary WCS of the input images. This will produce an expected result **only if** the WCS pointed to by ``orig_wcs_name`` was obtained by drizzling input images with their current primary WCS. EXAMPLES -------- A drizzled image named ``acswfc_mos2_drz.fits`` was created from 4 images using ``AstroDrizzle``. The primary WCS of this drizzled image was named ``'INITIAL_GUESS'``. This drizzled image was then aligned to some other image using ``TweakReg`` and the updated ("tweaked") primary WCS was named ``'BEST_WCS'`` while the previous primary WCS - the WCS named ``'INITIAL_GUESS'`` - was archived by ``TweakReg`` under WCS key ``'C'``. We will refer to this archived WCS as the "original" WCS. ``apply_tweak`` can now be used to compute the transformation between the original and the tweaked WCS and apply this transformation to the WCS of each of the input images that were drizzle-combined to produce the resampled image ``acswfc_mos2_drz.fits``. The simplest way to accomplish this would be to run ``apply_tweak()`` using default parameters: >>> from drizzlepac import tweakback >>> tweakback.apply_tweak('acswfc_mos2_drz.fits', orig_wcs_name='INITIAL_GUESS') or >>> tweakback.apply_tweak('acswfc_mos2_drz.fits', orig_wcs_key='C') If the same WCS should be applied to a specific set of images or extensions in those images, then we can explicitly specify input files: >>> tweakback.apply_tweak( ... 'acswfc_mos2_drz.fits', ... input='img_mos2a_flt.fits,img_mos2c_flt.fits[1],img_mos2d_flt.fits[sci,1]' ... ) In the examples above, current primary WCS of the input ``'img_mos2?_flt.fits'`` files will be archived and the primary WCS will be replaced with a "tweaked" WCS obtained by applying relevant transformations to the current primary WCS. Because we did not specify ``output_wcs_name``, the name of this tweaked primary WCS in the input images will be set to ``'BEST_WCS'``. See Also -------- stwcs.wcsutil.altwcs: Alternate WCS implementation """ print(f"\n*** 'apply_tweak' version {__version__:s} started " f"at {util._ptime()[0]:s}: ***\n") tweaked_wcs_name = kwargs.get('tweaked_wcs_name', None) tweaked_wcs_key = kwargs.get('tweaked_wcs_key', None) orig_wcs_key = kwargs.get('orig_wcs_key', None) tweaked_wcs_key = _process_wcs_key_par('tweaked_wcs_key', kwargs) orig_wcs_key = _process_wcs_key_par('orig_wcs_key', kwargs) # load drizzled image and extract input file names (if needed) and # load specified WCS: fis = parse_cs_line(drz_file, default_ext='*', fnamesOnly=False, doNotOpenDQ=True, im_fmode="readonly") if len(fis) == 0: raise FileNotFoundError(f"Drizzled file '{drz_file}' not found.") elif len(fis) > 1: for f in fis: f.release_all_images() raise ValueError("When expanded, 'drz_file' should correspond to a " "single file.") fi = fis[0] hdul = fi.image.hdu if len(fi.fext) == 1: drz_sciext = fi.fext[0] elif fi.fext: fi.release_all_images() raise ValueError( "Input drizzled image contains multiple image-like extensions. " "Please explicitly specify a single extension containing desired " "WCS.") else: fi.release_all_images() raise ValueError( "Specified extension was not found in the input drizzled image.") # check that there are at least two WCS in the drizzled image header: wkeys = altwcs.wcskeys(hdul, ext=drz_sciext) if len(wkeys) < 2: fi.release_all_images() raise ValueError(f"'{fi.image}[{ext2str(drz_sciext)}]' must " "contain at least two valid WCS: original and " "updated by tweakreg.") # load "tweaked" WCS tweaked_wcs_key, tweaked_wcs_name = _wcs_key_name( tweaked_wcs_key, tweaked_wcs_name, fi=fi, ext=drz_sciext, default_key=0, param_name='tweaked_wcs_name') tweaked_wcs = wcsutil.HSTWCS(hdul, ext=drz_sciext, wcskey=tweaked_wcs_key) # load "original" WCS if orig_wcs_key is None and orig_wcs_name is None: fi.release_all_images() raise ValueError( "Either 'orig_wcs_name' or 'orig_wcs_key' must be specified.") # default_key=-1 below is useless since we require that either # orig_wcs_key or orig_wcs_name be specified. However, in the future, # if we allow both to be None, we can use the last WCS key as the default # for the "original" WCS (last WCS key in the list). orig_wcs_key, orig_wcs_name = _wcs_key_name(orig_wcs_key, orig_wcs_name, fi=fi, ext=drz_sciext, default_key=-1, param_name='orig_wcs_name') orig_wcs = wcsutil.HSTWCS(hdul, ext=drz_sciext, wcskey=orig_wcs_key) # get RMS values reported for new solution crderr1 = fi.image.hdu[drz_sciext].header.get('CRDER1' + orig_wcs_key, 0.0) crderr2 = fi.image.hdu[drz_sciext].header.get('CRDER2' + orig_wcs_key, 0.0) fi.release_all_images() # done with the resampled image # Process the list of input files: if not isinstance(default_extname, str): raise TypeError("Argument 'default_extname' must be a string") default_extname = default_extname.strip() if default_extname.upper() == 'PRIMARY': ext2get = ('PRIMARY', 1) else: ext2get = (default_extname, '*') if input_files is None: # get input (FLT) file names from the drizzled image. This information # is recorded in the primary header of the drizzled image. input_files = ",".join(hdul[0].header["D???DATA"].values()) # Build a list of input files and extensions fnames_ext = {} fis = parse_cs_line(input_files, default_ext=ext2get, fnamesOnly=False, doNotOpenDQ=True, im_fmode="readonly") for f in fis: f.release_all_images() if f.image in fnames_ext: fnames_ext[f.image] |= set(f.fext) else: fnames_ext[f.image] = set(f.fext) if output_wcs_name is None: output_wcs_name = tweaked_wcs_name print(f"\n* Setting 'output_wcs_name' to '{output_wcs_name}'") auto_output_name = True else: auto_output_name = False output_wcs_name_u = output_wcs_name.strip().upper() # Compute tweakback transformation to each extension of each input file. # This is the main part of this function. # Before applying new WCS solution, make sure we can use the same # output WCS name for the updated WCS in all input images. # Also, this gives us opportunity to remove duplicate extensions, if any. final_wcs_info = [] for fname, extlist in fnames_ext.items(): print(f"\n* Working on input image {fname:s} ...") fis = parse_cs_line(f"{fname}", default_ext=ext2get, fnamesOnly=False, doNotOpenDQ=True, im_fmode="readonly") if len(fis) != 1: fi.release_all_images() raise AssertionError( "The algorithm should not open more than one file.") fi = fis[0] if not fi.fext: fi.release_all_images() print( f" No valid input image extension found. Skipping image {fname}.\n" ) continue current_wcs_info = { 'fname': fname, 'extlist': [], 'archived_wcs_name': [], 'updated_primary_wcs': [] } final_wcs_info.append(current_wcs_info) # Process extensions hdu_list = [] # to avoid processing duplicate hdus try: for ext in extlist: imhdulist = fi.image.hdu hdu = imhdulist[ext] if hdu in hdu_list: continue hdu_list.append(hdu) current_wcs_info['extlist'].append(ext) # Find the name under which to archive current WCS: all_wcs_names = [ v.upper() for v in altwcs.wcsnames( imhdulist, ext, include_primary=False).values() ] if output_wcs_name_u in all_wcs_names: if auto_output_name: raise ValueError( "Current value of 'output_wcs_name' was set to " f"'{tweaked_wcs_name}' by default. However, this " f"WCS name value was already used in {fname:s}[{ext2str(ext)}]. " "Please re-run 'apply_tweak' again and explicitly " "provide a unique value for the output WCS name.") else: raise ValueError( "Provided value of 'output_wcs_name' - '{tweaked_wcs_name}' - " f"was already used in {fname:s}[{ext2str(ext)}]. " "Please re-run 'apply_tweak' again and explicitly " "provide a unique value for the output WCS name.") if 'WCSNAME' in imhdulist[ext].header: pri_wcs_name = imhdulist[ext].header['WCSNAME'].strip() else: pri_wcs_name = 'NONAME' # add current output WCS name to the list so that archived # primary WCS will be archived under a different name: all_wcs_names.append(output_wcs_name) archived_name = altwcs._auto_increment_wcsname( pri_wcs_name, all_wcs_names) current_wcs_info['archived_wcs_name'].append(archived_name) # compute updated WCS: new_wcs = wcsutil.HSTWCS(imhdulist, ext=ext) update_chip_wcs(new_wcs, orig_wcs, tweaked_wcs, xrms=crderr1, yrms=crderr2) new_wcs.setOrient() current_wcs_info['updated_primary_wcs'].append(new_wcs) print( f" - Computed new WCS solution for {fname:s}[{ext2str(ext)}]:" ) repr_wcs = repr(new_wcs) print('\n'.join( [' ' + l.strip() for l in repr_wcs.split('\n')])) finally: fi.release_all_images() print("\n* Saving updated WCS to image headers:") for fwi in final_wcs_info: if not fwi['extlist']: continue fname = fwi['fname'] fis = parse_cs_line(f"{fname}", default_ext=ext2get, fnamesOnly=False, doNotOpenDQ=True, im_fmode="update") fi = fis[0] # Process extensions try: for ext, archived_name, new_wcs in zip(fwi['extlist'], fwi['archived_wcs_name'], fwi['updated_primary_wcs']): imhdulist = fi.image.hdu hdu = imhdulist[ext] hdu.header['HISTORY'] = ( f"apply_tweak version: {__version__} ({date.today().isoformat():s})" ) # Archive current primary WCS: awcs_key, awcs_name = altwcs.archive_wcs( imhdulist, ext, wcsname=archived_name, mode=altwcs.ArchiveMode.NO_CONFLICT) hdu.header['HISTORY'] = ( "apply_tweak: Archived Primary WCS under key " f"'{awcs_key}' on {date.today().isoformat():s}") hdu.header['HISTORY'] = ( f"apply_tweak: WCSNAME{awcs_key}='{awcs_name}'") # Update primary WCS of this extension: wcs_hdr = new_wcs.wcs2header(idc2hdr=new_wcs.idcscale is not None, relax=True) wcs_hdr.set('WCSNAME', output_wcs_name, before=0) wcs_hdr.set('WCSTYPE', updatehdr.interpret_wcsname_type(output_wcs_name), after=0) wcs_hdr.set('ORIENTAT', new_wcs.orientat, after=len(wcs_hdr)) hdu.header.update(wcs_hdr) hdu.header['HISTORY'] = ( f"apply_tweak: Applied Primary WCS correction on {date.today().isoformat():s}" ) str_extlist = '; '.join(map(ext2str, fwi['extlist'])) print(f" - Updated '{fname:s}', extensions: {str_extlist}") finally: util.updateNEXTENDKw(imhdulist) fi.release_all_images()