'results', model_name) #con'figs_det = det.load_configs(model_name='fpn_resnet') datafile = WaymoDataFileReader(data_fullpath) datafile_iter = iter(datafile) # initialize dataset iterator ## Initialize object detection configs_det = det.load_configs( model_name) # options are 'darknet', 'fpn_resnet' model_det = det.create_model(configs_det) configs_det.use_labels_as_objects = False # True = use groundtruth labels as objects, False = use model-based detection configs_det.save_results = False print(configs_det.use_labels_as_objects) ## Initialize tracking KF = Filter() # set up Kalman filter association = Association() # init data association manager = Trackmanagement() # init track manager lidar = None # init lidar sensor object camera = None # init camera sensor object ## Selective execution and visualization exec_data = ['pcl_from_rangeimage'] #ID_S2_EX1, ID_S'2_EX2, S4 #exec_data = ['pcl_from_rangeimage', 'load_image'] #ID_S3_EX1 #exec_detection = [] # ID_S1_EX1,2 options are 'bev_from_pcl', 'detect_objects', 'validate_object_labels', 'measure_detection_performance'; options not in the list will be loaded from file exec_tracking = [ ] # options are 'perform_tracking' ID_S1_EX1,2, ID_S2_EX1,2,3, S3_EX1, S4 exec_detection = ['bev_from_pcl'] #ID_S2_EX1, ID_S2_EX2,3 #exec_detection = ['bev_from_pcl', 'detect_objects'] #ID_S3_EX1 #exec_detection = ['bev_from_pcl', 'detect_objects', 'validate_object_labels', 'measure_detection_performance'] #S4 #exec_visualization = ['show_detection_performance'] #S4