def get_styles(self): if self.styles: return self.styles style_path = os.path.join(self.file_path, "word/styles.xml") with open(style_path, encoding="UTF-8") as f: styles = f.read() styles = BeautifulSoup(styles, "xml") self.styles = Styles(styles) return self.styles
def _write_styles_file(self): # Write the style xml file. xf_formats = self.workbook.xf_formats palette = self.workbook.palette font_count = self.workbook.font_count num_format_count = self.workbook.num_format_count border_count = self.workbook.border_count fill_count = self.workbook.fill_count custom_colors = self.workbook.custom_colors dxf_formats = self.workbook.dxf_formats styles = Styles() styles._set_style_properties([ xf_formats, palette, font_count, num_format_count, border_count, fill_count, custom_colors, dxf_formats]) styles._set_xml_writer(self._filename('xl/styles.xml')) styles._assemble_xml_file()
def add_output_box(self): text = tk.Text(self, Styles('text')) text.grid(row=3, column=0, sticky='WS') return text
def add_search_term(self): label = tk.Label(self, Styles('label', {'text': 'Search Term'})) label.grid(row=0, column=2, sticky='W') entry_search_term = tk.Entry(self, Styles('entry')) entry_search_term.grid(row=1, column=2) return entry_search_term
def add_web_address(self): label = tk.Label(self, Styles('label', {'text': 'Web Address'})) label.grid(row=0, column=0, sticky='W') entry_web_address = tk.Entry(self, Styles('entry')) entry_web_address.grid(row=1, column=0) return entry_web_address
def __init__(self, root, data, devices): """Method initiates GUI and all it's main components""" super().__init__(root) self.root = root self.root.geometry('500x400') self.styles = Styles() # make GUI self.main_frame = Frame(self.root, height=400, width=500) self.main_frame.pack_propagate(0) self.main_frame.pack() self.left_frame = Frame(self.main_frame, relief='groove', bd=3, height=400, width=100) self.right_frame = Frame(self.main_frame, relief='groove', bd=3, height=400, width=500) self.right_top_frame = Frame(self.right_frame, relief='groove', bd=1, height=200, width=350) self.right_bottom_frame = Frame(self.right_frame, relief='groove', bd=1, height=200, width=350) self.left_frame.pack(anchor='n', side=LEFT, fill='x') self.right_frame.pack(anchor='n', side=RIGHT) self.right_top_frame.pack() self.right_bottom_frame.pack() self.button_add_device = Button(self.left_frame, text='Add Device', relief='groove', command=self.add_device).pack( side=TOP, expand=True, fill='x') # data export self.data = data self.start_recording_button = Button( self.right_bottom_frame, text='Start Recording', relief='groove', command=self.start_recording).pack(side=LEFT) self.stop_recording_button = Button( self.right_bottom_frame, text='Stop Recording', relief='groove', command=self.stop_recording).pack() # IoT devices - menu self.devices = devices self.iot_dev_name_var = StringVar() self.iot_dev_name_var.set( self.devices.list_of_devices[0].serial_number) self.iot_dev_name_var.trace( 'w', lambda *pargs: self.callback_iot_dev_name_var()) self.radio_buttons_init() # other objects self.ani = None self.main_frame.pack_propagate(0) self.root.resizable(0, 0)
def recompute_and_populate(): """ - load pickled vectorizer - transform docs - compute cosine similarity for all vector pairs - data is retrieved at rev_rollup_ct = 1 (beer level) """ vec_pkl = "src/vocab/review_vectorizer.p" was_pkl, vec = load_vec(vec_pkl) # load data for styles with feature sets # overridden until full feature table is populated styles = Styles() top_sy = [159, 84, 157, 56, 58, 9, 128, 97, 116, 140] print 'Comparing the top %s styles: %s' % (len(top_sy), ', '.join( str(s) for s in top_sy)) X = styles.beer_reviews_rollup(top_sy, limit=0, rev_rollup_ct=1, shuffle=False) if was_pkl: print "Loaded pickled vectorizer." print "Feature count: %s" % len(vec.get_feature_names()) print "Transforming reviews" trans_pool = Pool(min(10, len(top_sy))) res_t = trans_pool.map(__asyncable_transform, [(vec, sy, X[X['style_id'] == sy]) for sy in top_sy]) # as style keyed dict res_t = {r[0]: {'beer_ids': r[1], 'X_t': r[2]} for r in res_t} else: # exit program return 0 print 'Truncating similarity table' bs = BeerSimilarity() # bs.remove_all() dim1 = sum(v['X_t'].shape[0] for k, v in res_t.iteritems()) dim2 = sum(len(v['X_t'].data) for k, v in res_t.iteritems()) print 'Computing similarities and saving to db %s' % dim1 print 'Nonzero elements %s' % dim2 # set style RU # will account for symmetry in the database # ru_sids = [ (top_sy[i], top_sy[j]) for i in xrange(len(top_sy)) for j in xrange(i,len(top_sy)) ] ru_sids = [(top_sy[i], top_sy[i]) for i in xrange(len(top_sy))] pool_inp = [] for ruc in ru_sids: X_t_ref = res_t[ruc[0]]['X_t'] b_id_ref = res_t[ruc[0]]['beer_ids'] X_t_comp = res_t[ruc[1]]['X_t'] b_id_comp = res_t[ruc[1]]['beer_ids'] pool_inp.append((bs, b_id_ref, X_t_ref, b_id_comp, X_t_comp, 100)) p = Pool(min(10, len(top_sy))) b_id_res = p.map(__asyncable_similarity, pool_inp) for res in b_id_res: if res[1] is not None: print '%s %s' % (', '.join(str(r) for r in res[0]), res[1])
# Description: # Modified to support streaming out with webcams, and not just raw JPEGs. # Most of the code credits to Miguel Grinberg, except that I made a small tweak. Thanks! # Credits: http://blog.miguelgrinberg.com/post/video-streaming-with-flask # # Usage: # 1. Install Python dependencies: cv2, flask. (wish that pip install works like a charm) # 2. Run "python main.py". # 3. Navigate the browser to the local webpage. from flask import Flask, render_template, Response, request from camera import VideoCamera from styles import Styles import json app = Flask(__name__) styles = Styles() def generate_video(camera): while True: frame = camera.get_frame() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n') def init_styles(): styles.set_eyebrows({"r": 0, "g": 0, "b": 255, "opacity": 128}) styles.set_eyeliner({"r": 0, "g": 255, "b": 0, "opacity": 110}) styles.set_lips({"r": 255, "g": 0, "b": 0, "opacity": 128})