Exemple #1
0
def generate_cores_kdtree(cc,
                          M1,
                          M2,
                          s1=False,
                          disrupt=None,
                          onlyFiltered=False,
                          giveFragmentsFofMass=False,
                          z=0):
    idx_filteredsatcores, M, X, Y, Z, nHalo = SHMLM.core_mask(cc,
                                                              M1=M1,
                                                              M2=M2,
                                                              s1=s1,
                                                              disrupt=disrupt,
                                                              z=z)
    cc_filtered = {k: cc[k][idx_filteredsatcores].copy() for k in cc.keys()}
    cc_filtered['M'] = M
    if giveFragmentsFofMass:
        fragmask = cc_filtered['fof_halo_tag'] < 0
        frag_realfht = np.bitwise_and(
            cc_filtered['fof_halo_tag'][fragmask] * -1, 0xffffffffffff)
        idx_m21 = many_to_one(frag_realfht, mt_cores['fof_halo_tag'])
        cc_filtered['M'][fragmask] = mt_cores['fof_halo_mass'][idx_m21]

    cc_filtered['x'] = SHMLM.periodic_bcs(cc_filtered['x'], X, SHMLM.BOXSIZE)
    cc_filtered['y'] = SHMLM.periodic_bcs(cc_filtered['y'], Y, SHMLM.BOXSIZE)
    cc_filtered['z'] = SHMLM.periodic_bcs(cc_filtered['z'], Z, SHMLM.BOXSIZE)
    Mmask = (M1 <= cc_filtered['M']) & (cc_filtered['M'] <= M2)
    cc_filtered = {k: cc_filtered[k][Mmask].copy() for k in cc_filtered.keys()}
    if onlyFiltered:
        return cc_filtered
    else:
        return spatial.cKDTree(
            np.vstack((cc_filtered['x'], cc_filtered['y'],
                       cc_filtered['z'])).T), cc_filtered, nHalo
Exemple #2
0
def generate_cores_kdtree(M1, M2, s1=False, disrupt=None):
    idx_filteredsatcores, M, X, Y, Z, nHalo = SHMLM.core_mask(cc, M1, M2, s1=s1, disrupt=disrupt)
    cc_filtered = { k:cc[k][idx_filteredsatcores].copy() for k in cc.keys() }
    cc_filtered['M'] = M
    cc_filtered['x'] = SHMLM.periodic_bcs(cc_filtered['x'], X, SHMLM.BOXSIZE)
    cc_filtered['y'] = SHMLM.periodic_bcs(cc_filtered['y'], Y, SHMLM.BOXSIZE)
    cc_filtered['z'] = SHMLM.periodic_bcs(cc_filtered['z'], Z, SHMLM.BOXSIZE)
    return spatial.cKDTree( np.vstack((cc_filtered['x'], cc_filtered['y'], cc_filtered['z'])).T ), cc_filtered, nHalo
Exemple #3
0
def sh_cores_match(cc, sh, mt, z):
    cores_tree, cc_filtered, _ = generate_cores_kdtree(cc,
                                                       M1=10**9,
                                                       M2=10**16,
                                                       s1=False,
                                                       disrupt=None,
                                                       z=z)

    sh['rvir'] = SHMLM.getRvir(sh['subhalo_mass'], z)

    idx_m21_sh = many_to_one(sh['fof_halo_tag'], mt['fof_halo_tag'])
    sh['M'] = mt['fof_halo_mass'][idx_m21_sh]

    sh['X'] = mt['fof_halo_center_x'][idx_m21_sh]
    sh['Y'] = mt['fof_halo_center_y'][idx_m21_sh]
    sh['Z'] = mt['fof_halo_center_z'][idx_m21_sh]

    subhalo_mean_x = SHMLM.periodic_bcs(sh['subhalo_mean_x'], sh['X'],
                                        SHMLM.BOXSIZE)
    subhalo_mean_y = SHMLM.periodic_bcs(sh['subhalo_mean_y'], sh['Y'],
                                        SHMLM.BOXSIZE)
    subhalo_mean_z = SHMLM.periodic_bcs(sh['subhalo_mean_z'], sh['Z'],
                                        SHMLM.BOXSIZE)

    sh_mask = (sh['subhalo_tag'] != 0)
    sh_arr = np.vstack((subhalo_mean_x[sh_mask], subhalo_mean_y[sh_mask],
                        subhalo_mean_z[sh_mask])).T
    distance_upper_bound = 2 * sh['rvir'][sh_mask]

    # Search radius of 2*rvir around each subhalo, only look for 1:1 matches

    dist, idx = [], []
    for i in range(len(distance_upper_bound)):
        dv, iv = cores_tree.query(sh_arr[i],
                                  k=2,
                                  distance_upper_bound=distance_upper_bound[i])
        dist.append(dv)
        idx.append(iv)
    dist = np.array(dist)
    idx = np.array(idx)

    f1, f2 = (dist != np.inf).T
    fmask = f1 ^ f2

    percentmatch = np.sum(fmask) / np.sum(sh_mask) * 100
    f1i = f1[np.invert(fmask)]
    percentmany = np.sum(f1i) / len(f1i) * 100
    percentnone = np.sum(np.invert(f1i)) / len(f1i) * 100
    print '{}% of masked subhalos have 1:1 core match. Of the unmatched subhalos, {}% have mutliple cores and {}% have no core.'.format(
        percentmatch, percentmany, percentnone)

    return np.flatnonzero(sh_mask)[fmask], idx[:, 0][fmask], cc_filtered
Exemple #4
0
def create_core_catalog_mevolved(virialFlag,
                                 writeOutputFlag=True,
                                 useLocalHost=False):
    """
    Appends mevolved to core catalog and saves output in HDF5.
    Works  by computing mevolved for step+1 at each step and saving that in memory.
    """
    if writeOutputFlag:
        print 'Reading data from {} and writing output to {}'.format(
            cc_data_dir, cc_output_dir)
    global cc, coresMaskedArray, distance_upper_bound, pool_mergedCoreTag, coresKDTree, KDTree_idx
    cc = {}
    cc_prev = {}

    for step in tqdm(steps):
        # Read in cc for step
        cc = {v: gio.gio_read(fname_cc(step, 'input'), v)[0] for v in vars_cc}

        if virialFlag:
            # Convert all mass to virial
            cc['infall_mass'] = SHMLM.m_vir(cc['infall_mass'], step)

        satellites_mask = cc['central'] == 0
        centrals_mask = cc['central'] == 1
        # assert np.sum(satellites_mask) + np.sum(centrals_mask) == len(cc['infall_mass']), 'central flag not 0 or 1.'
        numSatellites = np.sum(satellites_mask)

        # Verify there are no satellites at first step
        if step == steps[0]:
            assert numSatellites == 0, 'Satellites found at first step.'

        # Add column for m_evolved and initialize to 0
        for A in A_arr:
            for zeta in zeta_arr:
                cc[m_evolved_col(A, zeta)] = np.zeros_like(cc['infall_mass'])

        cc['mergedCoreTag'] = np.zeros_like(cc['core_tag'])
        cc['mergedCoreStep'] = np.zeros_like(cc['infall_step'])

        # wasInFragment: persistent flag that is False by default and becomes True when core is inside a fragment halo
        cc['wasInFragment'] = cc['fof_halo_tag'] < 0
        if step != steps[0]:
            _, i1, i2 = np.intersect1d(cc['core_tag'],
                                       cc_prev['core_tag'],
                                       return_indices=True)
            cc['wasInFragment'][i1] = np.logical_or(
                cc['wasInFragment'][i1], cc_prev['wasInFragment'][i2])
            cc['mergedCoreTag'][i1] = cc_prev['mergedCoreTag'][i2]
            cc['mergedCoreStep'][i1] = cc_prev['mergedCoreStep'][i2]

        # If there are satellites (not applicable for first step)
        if numSatellites != 0:

            # Match satellites to prev step cores using core tag.
            vals, idx1, idx2 = np.intersect1d(cc['core_tag'][satellites_mask],
                                              cc_prev['core_tag'],
                                              return_indices=True)

            # assert len(vals) == len(cc['core_tag'][satellites_mask]), 'All cores from prev step did not carry over.'
            # assert len(cc['core_tag'][satellites_mask]) == len(np.unique(cc['core_tag'][satellites_mask])), 'Satellite core tags not unique for this time step.'

            for A in A_arr:
                for zeta in zeta_arr:
                    # Set m_evolved of all satellites that have core tag match on prev step to next_m_evolved of prev step.
                    # DOUBLE MASK ASSIGNMENT: cc['m_evolved'][satellites_mask][idx1] = cc_prev['next_m_evolved'][idx2]
                    cc[m_evolved_col(A, zeta)][np.flatnonzero(satellites_mask)
                                               [idx1]] = cc_prev[m_evolved_col(
                                                   A, zeta, next=True)][idx2]

                    # Initialize m array (corresponds with cc[satellites_mask]) to be either infall_mass (step after infall) or m_evolved (subsequent steps).
                    m = (cc[m_evolved_col(A, zeta)][satellites_mask]
                         == 0) * cc['infall_mass'][satellites_mask] + (
                             cc[m_evolved_col(A, zeta)][satellites_mask] !=
                             0) * cc[m_evolved_col(A, zeta)][satellites_mask]

                    # Set m_evolved of satellites with m_evolved=0 to infall mass.
                    cc[m_evolved_col(A, zeta)][satellites_mask] = m

            # Initialize M array (corresponds with cc[satellites_mask]) to be host tree node mass of each satellite
            idx_m21 = many_to_one(cc['tree_node_index'][satellites_mask],
                                  cc['tree_node_index'][centrals_mask])
            M, X, Y, Z = (cc[k][centrals_mask][idx_m21]
                          for k in ['infall_mass', 'x', 'y', 'z'])

            KDTreemask = cc['mergedCoreTag'][satellites_mask] == 0
            x = SHMLM.periodic_bcs(cc['x'][satellites_mask][KDTreemask],
                                   X[KDTreemask], SHMLM.BOXSIZE)
            y = SHMLM.periodic_bcs(cc['y'][satellites_mask][KDTreemask],
                                   Y[KDTreemask], SHMLM.BOXSIZE)
            z = SHMLM.periodic_bcs(cc['z'][satellites_mask][KDTreemask],
                                   Z[KDTreemask], SHMLM.BOXSIZE)

            # coresMaskedArray = np.vstack((x, y, z)).T

            coresMaskedArray_Tree = np.vstack(
                (np.r_[x,
                       cc['x'][centrals_mask]], np.r_[y,
                                                      cc['y'][centrals_mask]],
                 np.r_[z, cc['z'][centrals_mask]])).T
            coresMaskedArray = coresMaskedArray_Tree

            KDTree_idx = np.r_[np.flatnonzero(satellites_mask)[KDTreemask],
                               np.flatnonzero(centrals_mask)]
            coresKDTree = spatial.cKDTree(coresMaskedArray_Tree)

            # Set mergedCoreTag as central core of KDTreemask cores with no mergedCoreTag that are `merged`
            '''
            disruptMask = cc['merged'][satellites_mask][KDTreemask]|(cc['radius'][satellites_mask][KDTreemask] >= SHMLM.CORERADIUSCUT)
            cc['mergedCoreTag'][ np.flatnonzero(satellites_mask)[KDTreemask] ] += disruptMask*cc['core_tag'][centrals_mask][idx_m21][KDTreemask]
            cc['mergedCoreStep'][ np.flatnonzero(satellites_mask)[KDTreemask] ] += disruptMask*step
            '''

            ### core merging detection
            # rvir_KDTreemask = SHMLM.getRvir(cc[m_evolved_col(1.1, 0.068)][satellites_mask][KDTreemask], SHMLM.step2z[step]) #infall should be exact m_evolved in production
            # rvir_KDTreemask = SHMLM.getRvir(cc['infall_mass'][satellites_mask][KDTreemask], SHMLM.step2z[step]) #infall should be exact m_evolved in production
            # distance_upper_bound = SHMLM.COREVIRIALRADIUSFACTOR * rvir_KDTreemask
            distance_upper_bound = SHMLM.COREVIRIALRADIUSFACTOR * SHMLM.getRvir(
                cc['infall_mass'][KDTree_idx], SHMLM.step2z[step])
            import ctypes

            # pool_mergedCoreTag = { i:np.full(len(KDTree_idx), 0, dtype=np.int64) for i in range(1,pool_size+1) }
            pool_mergedCoreTag = {
                i: multiprocessing.RawArray(
                    ctypes.c_int64, np.zeros(len(KDTree_idx), dtype=np.int64))
                for i in range(1, pool_size + 1)
            }
            # Search radius of 2*rvir around each core
            from datetime import datetime

            tstart = datetime.now()
            work = np.arange(len(distance_upper_bound))
            t1 = datetime.now() - tstart
            print "work=", t1
            tstart = datetime.now()
            p = Pool(pool_size)
            t2 = datetime.now() - tstart
            print "Pool=", t2
            tstart = datetime.now()
            p.map(query, np.array_split(work, pool_size))
            t3 = datetime.now() - tstart
            print "mapp=", t3
            tstart = datetime.now()
            p.close()
            t4 = datetime.now() - tstart
            print "close=", t4
            tstart = datetime.now()
            p.join()
            t5 = datetime.now() - tstart
            print "join=", t5
            tstart = datetime.now()

            # mergedCoreTag = np.full_like(pool_mergedCoreTag[1], 0)
            mergedCoreTag = np.zeros(len(KDTree_idx), dtype=np.int64)

            # pool_mergedCoreTag = {k:np.array(pool_mergedCoreTag[k]) for k in pool_mergedCoreTag.keys()}

            for i in range(1, pool_size + 1):
                mCT = np.array(pool_mergedCoreTag[i])
                newMergedMask = mCT != 0
                # print np.sum(newMergedMask)
                mergedCoreTag[newMergedMask] = mCT[newMergedMask]
            t6 = datetime.now() - tstart
            newMergedMask = mergedCoreTag != 0
            cc['mergedCoreTag'][
                KDTree_idx[newMergedMask]] = mergedCoreTag[newMergedMask]
            cc['mergedCoreStep'][KDTree_idx[newMergedMask]] = step
            print np.sum(cc['mergedCoreTag'] != 0)
            t7 = datetime.now() - tstart
            print t1, t2, t3, t4, t5, t6, t7
            ###
            print 'Merged centrals: ', np.sum(
                cc['mergedCoreTag'][centrals_mask] != 0)
            cc['mergedCoreTag'][centrals_mask] = 0
            cc['mergedCoreStep'][centrals_mask] = 0

        if writeOutputFlag:
            # Write output to disk
            h5_write_dict(fname_cc(step, 'output'), cc, 'coredata')

    # Compute m_evolved of satellites according to SHMLModel for NEXT time step and save as cc_prev['next_m_evolved'] in memory.
    # Mass loss assumed to begin at step AFTER infall detected.
        if step != steps[-1]:
            # cc_prev = { 'core_tag':cc['core_tag'].copy(), 'wasInFragment':cc['wasInFragment'].copy() }
            cc_prev = {
                k: cc[k].copy()
                for k in [
                    'core_tag', 'wasInFragment', 'mergedCoreTag',
                    'mergedCoreStep'
                ]
            }
            if numSatellites != 0:
                localhost_m21 = many_to_one(cc['host_core'][satellites_mask],
                                            cc['core_tag'])

            for A in A_arr:
                for zeta in zeta_arr:
                    cc_prev[m_evolved_col(A, zeta, next=True)] = np.zeros_like(
                        cc['infall_mass'])

                    if numSatellites != 0:  # If there are satellites (not applicable for first step)
                        m = cc[m_evolved_col(A, zeta)][satellites_mask]
                        if useLocalHost:
                            Mlocal = cc[m_evolved_col(A, zeta)][localhost_m21]
                            M_A_zeta = (Mlocal
                                        == 0) * M + (Mlocal != 0) * Mlocal
                            cc_prev[m_evolved_col(
                                A, zeta,
                                next=True)][satellites_mask] = SHMLM.m_evolved(
                                    m0=m,
                                    M0=M_A_zeta,
                                    step=steps[steps.index(step) + 1],
                                    step_prev=step,
                                    A=A,
                                    zeta=zeta)
                        else:
                            cc_prev[m_evolved_col(
                                A, zeta,
                                next=True)][satellites_mask] = SHMLM.m_evolved(
                                    m0=m,
                                    M0=M,
                                    step=steps[steps.index(step) + 1],
                                    step_prev=step,
                                    A=A,
                                    zeta=zeta)

    return cc
Exemple #5
0
    sh['Z'] = mt['fof_halo_center_z'][idx_m21_sh]

    ### Which cores to match subhalos to ###
    # Only include satellite cores in matching
    # cores_tree, cc_filtered, nHalo = generate_cores_kdtree(M1=M1, M2=M2, s1=False, disrupt=None)
    _, _, nHalo = generate_cores_kdtree(M1=M1, M2=M2, s1=False, disrupt=None)
    
    # Attempt to remove 'true' FOF central cores from list of all cores 
    # cc_mask = np.invert( np.isin(cc['x'], sh['X'])&(np.isin(cc['y'], sh['Y']))&(np.isin(cc['z'], sh['Z'])) )
    # cores_tree, cc_filtered = spatial.cKDTree( np.vstack((cc['x'][cc_mask], cc['y'][cc_mask], cc['z'][cc_mask])).T ), {k:cc[k][cc_mask].copy() for k in cc.keys()}
    
    # Use ALL cores in matching
    cores_tree, cc_filtered = spatial.cKDTree( np.vstack((cc['x'], cc['y'], cc['z'])).T ), cc
    ### End: Which cores to match subhalos to ###
    
    subhalo_mean_x = SHMLM.periodic_bcs(sh['subhalo_mean_x'], sh['X'], SHMLM.BOXSIZE)
    subhalo_mean_y = SHMLM.periodic_bcs(sh['subhalo_mean_y'], sh['Y'], SHMLM.BOXSIZE)
    subhalo_mean_z = SHMLM.periodic_bcs(sh['subhalo_mean_z'], sh['Z'], SHMLM.BOXSIZE)

    distance_mask = SHMLM.dist(subhalo_mean_x, subhalo_mean_y, subhalo_mean_z, sh['X'], sh['Y'], sh['Z']) >= SHMLM.SUBHALOHOSTVIRIALRADIUSFACTOR*SHMLM.getRvir(sh['M'], z)
    sh_mask = (sh['subhalo_tag']!=0)&(M1<=sh['M'])&(sh['M']<=M2)#&(distance_mask) #&(sh['subhalo_mass']>=SHMLM.SUBHALOMASSCUT)
    print '{}% satellite subhalos in given mass range remain after mask.'.format(np.sum(sh_mask)/np.sum((sh['subhalo_tag']!=0)&(M1<=sh['M'])&(sh['M']<=M2))*100.)

    sh_arr = np.vstack((subhalo_mean_x[sh_mask], subhalo_mean_y[sh_mask], subhalo_mean_z[sh_mask])).T
    distance_upper_bound = SHMLM.SUBHALOVIRIALRADIUSFACTOR * sh['rvir'][sh_mask]
    # for SUBHALOVIRIALRADIUSFACTOR in [1,2,3,4]:
    #     distance_upper_bound = SUBHALOVIRIALRADIUSFACTOR * sh['rvir'][sh_mask]
    #     mostMassiveCore(A=1.1, zeta=0.01, plotFlag=False)
    '''
    # Search radius of 2*rvir around each subhalo, only look for 1:1 matches
    dist, idx = [], []
Exemple #6
0
def create_core_catalog_mevolved(virialFlag,
                                 writeOutputFlag=True,
                                 useLocalHost=False):
    """
    Appends mevolved to core catalog and saves output in HDF5.
    Works  by computing mevolved for step+1 at each step and saving that in memory.
    """
    if writeOutputFlag:
        print 'Reading data from {} and writing output to {}'.format(
            cc_data_dir, cc_output_dir)

    cc = {}
    cc_prev = {}

    for step in tqdm(steps):
        # Read in cc for step
        cc = {v: gio.gio_read(fname_cc(step, 'input'), v)[0] for v in vars_cc}

        if virialFlag:
            # Convert all mass to virial
            cc['infall_mass'] = SHMLM.m_vir(cc['infall_mass'], step)

        satellites_mask = cc['central'] == 0
        centrals_mask = cc['central'] == 1
        # assert np.sum(satellites_mask) + np.sum(centrals_mask) == len(cc['infall_mass']), 'central flag not 0 or 1.'
        numSatellites = np.sum(satellites_mask)

        # Verify there are no satellites at first step
        if step == steps[0]:
            assert numSatellites == 0, 'Satellites found at first step.'

        # Add column for m_evolved and initialize to 0
        for A in A_arr:
            for zeta in zeta_arr:
                cc[m_evolved_col(A, zeta)] = np.zeros_like(cc['infall_mass'])

        cc['mergedCoreTag'] = np.zeros_like(cc['core_tag'])
        cc['mergedCoreStep'] = np.zeros_like(cc['infall_step'])

        # wasInFragment: persistent flag that is False by default and becomes True when core is inside a fragment halo
        cc['wasInFragment'] = cc['fof_halo_tag'] < 0
        if step != steps[0]:
            _, i1, i2 = np.intersect1d(cc['core_tag'],
                                       cc_prev['core_tag'],
                                       return_indices=True)
            cc['wasInFragment'][i1] = np.logical_or(
                cc['wasInFragment'][i1], cc_prev['wasInFragment'][i2])
            cc['mergedCoreTag'][i1] = cc_prev['mergedCoreTag'][i2]
            cc['mergedCoreStep'][i1] = cc_prev['mergedCoreStep'][i2]

        # If there are satellites (not applicable for first step)
        if numSatellites != 0:

            # Match satellites to prev step cores using core tag.
            vals, idx1, idx2 = np.intersect1d(cc['core_tag'][satellites_mask],
                                              cc_prev['core_tag'],
                                              return_indices=True)

            # assert len(vals) == len(cc['core_tag'][satellites_mask]), 'All cores from prev step did not carry over.'
            # assert len(cc['core_tag'][satellites_mask]) == len(np.unique(cc['core_tag'][satellites_mask])), 'Satellite core tags not unique for this time step.'

            for A in A_arr:
                for zeta in zeta_arr:
                    # Set m_evolved of all satellites that have core tag match on prev step to next_m_evolved of prev step.
                    # DOUBLE MASK ASSIGNMENT: cc['m_evolved'][satellites_mask][idx1] = cc_prev['next_m_evolved'][idx2]
                    cc[m_evolved_col(A, zeta)][np.flatnonzero(satellites_mask)
                                               [idx1]] = cc_prev[m_evolved_col(
                                                   A, zeta, next=True)][idx2]

                    # Initialize m array (corresponds with cc[satellites_mask]) to be either infall_mass (step after infall) or m_evolved (subsequent steps).
                    m = (cc[m_evolved_col(A, zeta)][satellites_mask]
                         == 0) * cc['infall_mass'][satellites_mask] + (
                             cc[m_evolved_col(A, zeta)][satellites_mask] !=
                             0) * cc[m_evolved_col(A, zeta)][satellites_mask]

                    # Set m_evolved of satellites with m_evolved=0 to infall mass.
                    cc[m_evolved_col(A, zeta)][satellites_mask] = m

            # Initialize M array (corresponds with cc[satellites_mask]) to be host tree node mass of each satellite
            idx_m21 = many_to_one(cc['tree_node_index'][satellites_mask],
                                  cc['tree_node_index'][centrals_mask])
            M, X, Y, Z = (cc[k][centrals_mask][idx_m21]
                          for k in ['infall_mass', 'x', 'y', 'z'])

            KDTreemask = cc['mergedCoreTag'][satellites_mask] == 0
            x = SHMLM.periodic_bcs(cc['x'][satellites_mask][KDTreemask],
                                   X[KDTreemask], SHMLM.BOXSIZE)
            y = SHMLM.periodic_bcs(cc['y'][satellites_mask][KDTreemask],
                                   Y[KDTreemask], SHMLM.BOXSIZE)
            z = SHMLM.periodic_bcs(cc['z'][satellites_mask][KDTreemask],
                                   Z[KDTreemask], SHMLM.BOXSIZE)

            coresMaskedArray = np.vstack((x, y, z)).T

            coresMaskedArray_Tree = np.vstack(
                (np.r_[x,
                       cc['x'][centrals_mask]], np.r_[y,
                                                      cc['y'][centrals_mask]],
                 np.r_[z, cc['z'][centrals_mask]])).T

            KDTree_idx = np.r_[np.flatnonzero(satellites_mask)[KDTreemask],
                               np.flatnonzero(centrals_mask)]
            coresKDTree = spatial.cKDTree(coresMaskedArray_Tree)

            # Set mergedCoreTag as central core of KDTreemask cores with no mergedCoreTag that are `merged`
            disruptMask = cc['merged'][satellites_mask][KDTreemask] | (
                cc['radius'][satellites_mask][KDTreemask] >=
                SHMLM.CORERADIUSCUT)
            cc['mergedCoreTag'][np.flatnonzero(satellites_mask)
                                [KDTreemask]] += disruptMask * cc['core_tag'][
                                    centrals_mask][idx_m21][KDTreemask]
            cc['mergedCoreStep'][np.flatnonzero(satellites_mask)
                                 [KDTreemask]] += disruptMask * step

            ### core merging detection
            # rvir_KDTreemask = SHMLM.getRvir(cc[m_evolved_col(1.1, 0.068)][satellites_mask][KDTreemask], SHMLM.step2z[step]) #infall should be exact m_evolved in production
            rvir_KDTreemask = SHMLM.getRvir(
                cc['infall_mass'][satellites_mask][KDTreemask], SHMLM.
                step2z[step])  #infall should be exact m_evolved in production
            distance_upper_bound = SHMLM.COREVIRIALRADIUSFACTOR * rvir_KDTreemask

            # Search radius of 2*rvir around each core
            for i in tqdm(range(len(distance_upper_bound))):
                qres = coresKDTree.query_ball_point(coresMaskedArray[i],
                                                    r=distance_upper_bound[i])
                assert len(qres) > 0, 'Merge with self not detected!'
                if len(qres) > 1:
                    # idxmax = qres[ np.argmax(cc['infall_mass'][satellites_mask][KDTreemask][qres]) ]
                    idxmax = qres[np.argmax(
                        cc['infall_mass'][KDTree_idx][qres])]

                    qres = np.array(qres)
                    qres2 = qres[qres != idxmax]
                    # cc['mergedCoreTag'][ np.flatnonzero(satellites_mask)[KDTreemask][qres2] ] = cc['core_tag'][satellites_mask][KDTreemask][idxmax]
                    # cc['mergedCoreStep'][ np.flatnonzero(satellites_mask)[KDTreemask][qres2] ] = step
                    cc['mergedCoreTag'][
                        KDTree_idx[qres2]] = cc['core_tag'][KDTree_idx][idxmax]
                    cc['mergedCoreStep'][KDTree_idx[qres2]] = step
            ###

        if writeOutputFlag:
            # Write output to disk
            h5_write_dict(fname_cc(step, 'output'), cc, 'coredata')

    # Compute m_evolved of satellites according to SHMLModel for NEXT time step and save as cc_prev['next_m_evolved'] in memory.
    # Mass loss assumed to begin at step AFTER infall detected.
        if step != steps[-1]:
            # cc_prev = { 'core_tag':cc['core_tag'].copy(), 'wasInFragment':cc['wasInFragment'].copy() }
            cc_prev = {
                k: cc[k].copy()
                for k in [
                    'core_tag', 'wasInFragment', 'mergedCoreTag',
                    'mergedCoreStep'
                ]
            }
            if numSatellites != 0:
                localhost_m21 = many_to_one(cc['host_core'][satellites_mask],
                                            cc['core_tag'])

            for A in A_arr:
                for zeta in zeta_arr:
                    cc_prev[m_evolved_col(A, zeta, next=True)] = np.zeros_like(
                        cc['infall_mass'])

                    if numSatellites != 0:  # If there are satellites (not applicable for first step)
                        m = cc[m_evolved_col(A, zeta)][satellites_mask]
                        if useLocalHost:
                            Mlocal = cc[m_evolved_col(A, zeta)][localhost_m21]
                            M_A_zeta = (Mlocal
                                        == 0) * M + (Mlocal != 0) * Mlocal
                            cc_prev[m_evolved_col(
                                A, zeta,
                                next=True)][satellites_mask] = SHMLM.m_evolved(
                                    m0=m,
                                    M0=M_A_zeta,
                                    step=steps[steps.index(step) + 1],
                                    step_prev=step,
                                    A=A,
                                    zeta=zeta)
                        else:
                            cc_prev[m_evolved_col(
                                A, zeta,
                                next=True)][satellites_mask] = SHMLM.m_evolved(
                                    m0=m,
                                    M0=M,
                                    step=steps[steps.index(step) + 1],
                                    step_prev=step,
                                    A=A,
                                    zeta=zeta)

    return cc
Exemple #7
0
    if step == steps[0]:
        assert numSatellites == 0, 'Satellites found at first step.'

    #cc['mergedCoreTag'] = np.zeros_like(cc['core_tag'])
    #cc['mergedCoreStep'] = np.zeros_like(cc['infall_step'])
    # cc['phaseSpaceMerged'] = np.zeros_like(cc['central'])

    # If there are satellites (not applicable for first step)
    assert numSatellites != 0

    # Initialize M array (corresponds with cc[satellites_mask]) to be host tree node mass of each satellite
    idx_m21 = many_to_one( cc['tree_node_index'][satellites_mask], cc['tree_node_index'][centrals_mask] )
    M, X, Y, Z = (cc[k][centrals_mask][idx_m21] for k in ['infall_mass', 'x', 'y', 'z'])

    x, y, z = cc['x'].copy(), cc['y'].copy(), cc['z'].copy()
    x[satellites_mask] = SHMLM.periodic_bcs(cc['x'][satellites_mask], X, SHMLM.BOXSIZE)
    y[satellites_mask] = SHMLM.periodic_bcs(cc['y'][satellites_mask], Y, SHMLM.BOXSIZE)
    z[satellites_mask] = SHMLM.periodic_bcs(cc['z'][satellites_mask], Z, SHMLM.BOXSIZE)

    srt_fht = np.argsort(cc['fof_halo_tag'])
    cc_srt = { k:cc[k][srt_fht].copy() for k in cc.keys() }
    cc_srt['x'] = x[srt_fht]
    cc_srt['y'] = y[srt_fht]
    cc_srt['z'] = z[srt_fht]
    _, idx, cnts = np.unique(cc_srt['fof_halo_tag'], return_index=True, return_counts=True)

comm.barrier()

if rank == 0:
    numCnts = len(cnts)
else: