def test_log_metric(self): submarine.log_metric("name_1", 5) submarine.log_metric("name_1", 6) # Validate params with self.store.ManagedSessionMaker() as session: metrics = session.query(SqlMetric).options().filter( SqlMetric.id == JOB_ID).all() assert len(metrics) == 2 assert metrics[0].key == "name_1" assert metrics[0].value == 5 assert metrics[0].id == JOB_ID assert metrics[1].value == 6
def test_log_metric(self): submarine.log_metric("name_1", 5, "worker-1") submarine.log_metric("name_1", 6, "worker-2") # Validate params with self.store.ManagedSessionMaker() as session: metrics = session \ .query(SqlMetric) \ .options() \ .filter(SqlMetric.job_name == JOB_NAME).all() assert len(metrics) == 2 assert metrics[0].key == "name_1" assert metrics[0].value == 5 assert metrics[0].worker_index == "worker-1" assert metrics[0].job_name == JOB_NAME assert metrics[1].value == 6 assert metrics[1].worker_index == "worker-2"
def train(args, model, device, train_loader, optimizer, epoch, writer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = F.nll_loss(output, target) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print("Train Epoch: {} [{}/{} ({:.0f}%)]\tloss={:.4f}".format( epoch, batch_idx * len(data), len(train_loader.dataset), 100.0 * batch_idx / len(train_loader), loss.item(), )) niter = epoch * len(train_loader) + batch_idx writer.add_scalar("loss", loss.item(), niter) submarine.log_metric("loss", loss.item(), niter)
def test_log_metric(tracking_uri_mock): environ["SUBMARINE_JOB_NAME"] = JOB_NAME submarine.log_metric("name_1", 5, "worker-1") submarine.log_metric("name_1", 6, "worker-2") tracking_uri = utils.get_tracking_uri() store = utils.get_sqlalchemy_store(tracking_uri) # Validate params with store.ManagedSessionMaker() as session: metrics = session \ .query(SqlMetric) \ .options() \ .filter(SqlMetric.job_name == JOB_NAME).all() assert len(metrics) == 2 assert metrics[0].key == "name_1" assert metrics[0].value == 5 assert metrics[0].worker_index == "worker-1" assert metrics[0].job_name == JOB_NAME assert metrics[1].value == 6 assert metrics[1].worker_index == "worker-2"
def test(args, model, device, test_loader, writer, epoch): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += F.nll_loss( output, target, reduction="sum").item() # sum up batch loss pred = output.max( 1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) print("\naccuracy={:.4f}\n".format( float(correct) / len(test_loader.dataset))) writer.add_scalar("accuracy", float(correct) / len(test_loader.dataset), epoch) submarine.log_metric("accuracy", float(correct) / len(test_loader.dataset), epoch)
# contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from os import environ from sklearn.linear_model import LogisticRegression import submarine if __name__ == "__main__": # note: SUBMARINE_JOB_NAME should be set by submarine submitter environ["SUBMARINE_JOB_NAME"] = "application_1234" X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1) y = np.array([0, 0, 1, 1, 1, 0]) lr = LogisticRegression(solver='liblinear', max_iter=100) submarine.log_param("max_iter", 100, "worker-1") lr.fit(X, y) score = lr.score(X, y) print("Score: %s" % score) submarine.log_metric("score", score, "worker-1")
""" Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import random import time import submarine if __name__ == "__main__": submarine.log_param("learning_rate", random.random()) for i in range(100): time.sleep(1) submarine.log_metric("mse", random.random() * 100, i) submarine.log_metric("acc", random.random(), i)
working_dir = "/tmp/my_working_dir" log_dir = os.path.join(working_dir, "log") ckpt_filepath = os.path.join(working_dir, "ckpt") backup_dir = os.path.join(working_dir, "backup") callbacks = [ tf.keras.callbacks.TensorBoard(log_dir=log_dir), tf.keras.callbacks.ModelCheckpoint(filepath=ckpt_filepath), tf.keras.callbacks.experimental.BackupAndRestore(backup_dir=backup_dir), ] # Define the checkpoint directory to store the checkpoints. checkpoint_dir = "./training_checkpoints" model.fit(dc, epochs=5, steps_per_epoch=20, callbacks=callbacks) if __name__ == "__main__": EPOCHS = 5 hist = model.fit(dc, epochs=EPOCHS, steps_per_epoch=20, callbacks=callbacks) for i in range(EPOCHS): submarine.log_metric("val_loss", hist.history["loss"][i], i) submarine.log_metric("Val_accuracy", hist.history["accuracy"][i], i) model.load_weights(tf.train.latest_checkpoint(checkpoint_dir)) """ Reference: https://www.tensorflow.org/tutorials/distribute/parameter_server_training """
# Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from sklearn.linear_model import LogisticRegression import submarine if __name__ == "__main__": X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1) y = np.array([0, 0, 1, 1, 1, 0]) lr = LogisticRegression(solver="liblinear", max_iter=100) submarine.log_param("max_iter", 100) lr.fit(X, y) score = lr.score(X, y) print("Score: %s" % score) submarine.log_metric("score", score)
def on_epoch_end(self, epoch, logs=None): # monitor the loss and accuracy print(logs) submarine.log_metric("loss", logs["loss"], epoch) submarine.log_metric("accuracy", logs["accuracy"], epoch)
def on_epoch_end(self, epoch, logs=None): print("\nLearning rate for epoch {} is {}".format( epoch + 1, model.optimizer.lr.numpy())) submarine.log_metric("lr", model.optimizer.lr.numpy()) submarine.save_model(model, "tensorflow", "mnist-tf")
submarine.set_tracking_uri( "mysql+pymysql://submarine:password@submarine-database/submarine") print("TF_CONFIG", env.get_env("TF_CONFIG")) print("JOB_NAME: ", env.get_env("JOB_NAME")) print("TYPE: ", env.get_env("TPYE")) print("TASK_INDEX: ", env.get_env("TASK_INDEX")) print("CLUSTER_SPEC: ", env.get_env("CLUSTER_SPEC")) print("RANK: ", env.get_env("RANK")) submarine.log_param("max_iter", 100) submarine.log_param("learning_rate", 0.0001) submarine.log_param("alpha", 20) submarine.log_param("batch_size", 256) submarine.log_metric("score", 2) submarine.log_metric("score", 5) submarine.log_metric("score", 8) submarine.log_metric("score", 5) submarine.log_metric("score", 10) submarine.log_metric("AUC", 0.62) submarine.log_metric("AUC", 0.68) submarine.log_metric("AUC", 0.75) submarine.log_metric("AUC", 0.64) submarine.log_metric("AUC", 0.79) submarine.log_metric("AUC", 0.86) submarine.log_metric("loss", 0.50) submarine.log_metric("loss", 0.36) submarine.log_metric("loss", 0.68)