Exemple #1
0
 def test_log_param(self):
     submarine.log_param("name_1", "a")
     # Validate params
     with self.store.ManagedSessionMaker() as session:
         params = session.query(SqlParam).options().filter(
             SqlParam.id == JOB_ID).all()
         assert params[0].key == "name_1"
         assert params[0].value == "a"
         assert params[0].id == JOB_ID
 def log_param(self):
     submarine.log_param("name_1", "a", "worker-1")
     # Validate params
     with self.store.ManagedSessionMaker() as session:
         params = session \
             .query(SqlParam) \
             .options() \
             .filter(SqlParam.job_name == JOB_NAME).all()
         assert params[0].key == "name_1"
         assert params[0].value == "a"
         assert params[0].worker_index == "worker-1"
         assert params[0].job_name == JOB_NAME
def test_log_param(tracking_uri_mock):
    environ["SUBMARINE_JOB_NAME"] = JOB_NAME
    submarine.log_param("name_1", "a", "worker-1")

    tracking_uri = utils.get_tracking_uri()
    store = utils.get_sqlalchemy_store(tracking_uri)

    # Validate params
    with store.ManagedSessionMaker() as session:
        params = session \
            .query(SqlParam) \
            .options() \
            .filter(SqlParam.job_name == JOB_NAME).all()
        assert params[0].key == "name_1"
        assert params[0].value == "a"
        assert params[0].worker_index == "worker-1"
        assert params[0].job_name == JOB_NAME
Exemple #4
0
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from os import environ
from sklearn.linear_model import LogisticRegression
import submarine

if __name__ == "__main__":
    # note: SUBMARINE_JOB_NAME should be set by submarine submitter
    environ["SUBMARINE_JOB_NAME"] = "application_1234"
    X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1)
    y = np.array([0, 0, 1, 1, 1, 0])
    lr = LogisticRegression(solver='liblinear', max_iter=100)
    submarine.log_param("max_iter", 100, "worker-1")
    lr.fit(X, y)
    score = lr.score(X, y)
    print("Score: %s" % score)
    submarine.log_metric("score", score, "worker-1")
Exemple #5
0
"""
 Licensed to the Apache Software Foundation (ASF) under one
 or more contributor license agreements.  See the NOTICE file
 distributed with this work for additional information
 regarding copyright ownership.  The ASF licenses this file
 to you under the Apache License, Version 2.0 (the
 "License"); you may not use this file except in compliance
 with the License.  You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing,
 software distributed under the License is distributed on an
 "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 KIND, either express or implied.  See the License for the
 specific language governing permissions and limitations
 under the License.
"""

import random
import time

import submarine

if __name__ == "__main__":
    submarine.log_param("learning_rate", random.random())
    for i in range(100):
        time.sleep(1)
        submarine.log_metric("mse", random.random() * 100, i)
        submarine.log_metric("acc", random.random(), i)
Exemple #6
0
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from sklearn.linear_model import LogisticRegression

import submarine

if __name__ == "__main__":
    X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1)
    y = np.array([0, 0, 1, 1, 1, 0])
    lr = LogisticRegression(solver="liblinear", max_iter=100)
    submarine.log_param("max_iter", 100)
    lr.fit(X, y)
    score = lr.score(X, y)
    print("Score: %s" % score)
    submarine.log_metric("score", score)
    def on_epoch_end(self, epoch, logs=None):
        print("\nLearning rate for epoch {} is {}".format(
            epoch + 1, model.optimizer.lr.numpy()))
        submarine.log_metric("lr", model.optimizer.lr.numpy())
        submarine.save_model(model, "tensorflow", "mnist-tf")


# Put all the callbacks together.
callbacks = [
    tf.keras.callbacks.TensorBoard(log_dir="./logs"),
    tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_prefix,
                                       save_weights_only=True),
    tf.keras.callbacks.LearningRateScheduler(decay),
    PrintLR(),
]

if __name__ == "__main__":
    EPOCHS = 2
    hist = model.fit(train_dataset, epochs=EPOCHS, callbacks=callbacks)
    for i in range(EPOCHS):
        submarine.log_metric("val_loss", hist.history["loss"][i], i)
        submarine.log_metric("Val_accuracy", hist.history["accuracy"][i], i)
    model.load_weights(tf.train.latest_checkpoint(checkpoint_dir))
    eval_loss, eval_acc = model.evaluate(eval_dataset)
    print("Eval loss: {}, Eval accuracy: {}".format(eval_loss, eval_acc))
    submarine.log_param("loss", eval_loss)
    submarine.log_param("acc", eval_acc)
"""Reference:
https://www.tensorflow.org/api_docs/python/tf/distribute/MirroredStrategy
"""
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.1307, ), (0.3081, ))
        ]),
    ),
                                              batch_size=args.test_batch_size,
                                              shuffle=False,
                                              **kwargs)

    model = Net().to(device)

    if is_distributed():
        Distributor = (nn.parallel.DistributedDataParallel
                       if use_cuda else nn.parallel.DistributedDataParallelCPU)
        model = Distributor(model)

    optimizer = optim.SGD(model.parameters(),
                          lr=args.lr,
                          momentum=args.momentum)
    submarine.log_param("learning_rate", args.lr)
    submarine.log_param("batch_size", args.batch_size)
    for epoch in range(1, args.epochs + 1):
        train(args, model, device, train_loader, optimizer, epoch, writer)
        test(args, model, device, test_loader, writer, epoch)
    if args.save_model:
        torch.save(model.state_dict(), "mnist_cnn.pt")
"""
Reference:
https://github.com/kubeflow/pytorch-operator/blob/master/examples/mnist/mnist.py
"""
Exemple #9
0
#experiment = Experiment(api_key="ej6XeyCVjqHM8uLDNj5VGrzjP",
#                        project_name="testing", workspace="pingsutw")

if __name__ == "__main__":
    submarine.set_tracking_uri(
        "mysql+pymysql://submarine:password@submarine-database/submarine")

    print("TF_CONFIG", env.get_env("TF_CONFIG"))
    print("JOB_NAME: ", env.get_env("JOB_NAME"))
    print("TYPE: ", env.get_env("TPYE"))
    print("TASK_INDEX: ", env.get_env("TASK_INDEX"))
    print("CLUSTER_SPEC: ", env.get_env("CLUSTER_SPEC"))
    print("RANK: ", env.get_env("RANK"))

    submarine.log_param("max_iter", 100)
    submarine.log_param("learning_rate", 0.0001)
    submarine.log_param("alpha", 20)
    submarine.log_param("batch_size", 256)

    submarine.log_metric("score", 2)
    submarine.log_metric("score", 5)
    submarine.log_metric("score", 8)
    submarine.log_metric("score", 5)
    submarine.log_metric("score", 10)

    submarine.log_metric("AUC", 0.62)
    submarine.log_metric("AUC", 0.68)
    submarine.log_metric("AUC", 0.75)
    submarine.log_metric("AUC", 0.64)
    submarine.log_metric("AUC", 0.79)