import mimo_net from subpackages import NetworkOptions os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "1" opts = NetworkOptions.NetworkOptions( exp_dir=os.path.normpath(os.path.join(os.getcwd(), 'ExpDir')), num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=600, image_width=600, label_height=600, label_width=600, crop_height=508, crop_width=508, in_feat_dim=3, in_label_dim=4, num_of_classes=2, batch_size=1, num_of_epoch=500, data_dir=os.path.normpath( 'D:/Shan/MyCodes/TracerX/TissueSegmentation/Data'), train_data_filename='TrainData171017.h5', valid_data_filename='ValidData171017.h5', current_epoch_num=0) if os.path.isdir(os.path.join(opts.exp_dir, 'code')): rmtree(os.path.join(opts.exp_dir, 'code')) os.makedirs(os.path.join(opts.exp_dir, 'code')) if not os.path.isdir(opts.exp_dir):
d[a[0]] = a[1].strip('\n') print('results_dir: ' + d['results_dir'], flush=True) print('file_name_pattern: ' + d['file_name_pattern'], flush=True) print('date: ' + d['date'], flush=True) print('exp_dir: ' + d['exp_dir'], flush=True) opts = NetworkOptions.NetworkOptions( exp_dir=d['exp_dir'], num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=508, image_width=508, label_height=508, label_width=508, in_feat_dim=3, in_label_dim=4, num_of_classes=2, batch_size=1, data_dir=data_dir, results_dir=d['results_dir'], current_epoch_num=0, file_name_pattern=d['file_name_pattern'], pre_process=True, #False to disable matlab ) opts.results_dir = (os.path.join(opts.results_dir, '20171031')) if not os.path.isdir(opts.results_dir): os.makedirs(opts.results_dir, exist_ok=True) os.makedirs(os.path.join(opts.results_dir, 'mat'), exist_ok=True) os.makedirs(os.path.join(opts.results_dir, 'annotated_images'), exist_ok=True)
import sccnn_classifier as sccnn_classifier from subpackages import NetworkOptions # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # os.environ["CUDA_VISIBLE_DEVICES"] = "0" opts = NetworkOptions.NetworkOptions( exp_dir='ExpDir-IHC/', num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=51, image_width=51, in_feat_dim=3, in_label_dim=1, num_of_classes=4, batch_size=500, data_dir='R:\\tracerx\\Melanoma\\Quad\\data\\cws', results_dir='D:/tmp/results_diagostics-ihc/classification', detection_results_path= 'R:\\tracerx\\Melanoma\\Quad\\results\\detection\\20171017', tissue_segment_dir='', preprocessed_dir=None, current_epoch_num=0, file_name_pattern='CB12*', pre_process=True, color_code_file='IHC_CD4_CD8_FoxP3.csv') opts.results_dir = (os.path.join(opts.results_dir, '20171019')) opts.preprocessed_dir = os.path.join(opts.preprocessed_dir, '20171019') if not os.path.isdir(opts.results_dir): os.makedirs(opts.results_dir)
print('results_dir: ' + d['results_dir'], flush=True) print('tissue_segment_dir: ' + d['tissue_segment_dir'], flush=True) print('file_name_pattern: ' + d['file_name_pattern'], flush=True) print('date: ' + d['date'], flush=True) print('exp_dir: ' + d['exp_dir'], flush=True) opts = NetworkOptions.NetworkOptions( exp_dir=d['exp_dir'], num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=31, image_width=31, in_feat_dim=int(d['in_feat_dim']), label_height=13, label_width=13, in_label_dim=1, batch_size=90, data_dir=data_dir, results_dir=d['results_dir'], tissue_segment_dir=d['tissue_segment_dir'], current_epoch_num=0, file_name_pattern=d['file_name_pattern'], preprocessed_dir=d['preprocessed_dir'], pre_process=True) opts.results_dir = os.path.join(opts.results_dir, d['date']) if d['preprocessed_dir'] is None: opts.preprocessed_dir = os.path.join(opts.preprocessed_dir, d['date']) if not os.path.isdir(opts.results_dir): os.makedirs(opts.results_dir, exist_ok=True)
d[a[0]] = a[1].strip('\n') print('exp_dir: ' + d['exp_dir'], flush=True) print('train_data_filename:' + d['train_data_filename'], flush=True) print('valid_data_filename:' + d['valid_data_filename'], flush=True) opts = NetworkOptions.NetworkOptions( exp_dir=d['exp_dir'], num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=600, image_width=600, label_height=600, label_width=600, crop_height=508, crop_width=508, in_feat_dim=3, in_label_dim=4, num_of_classes=2, batch_size=1, num_of_epoch=500, data_dir=data_dir, train_data_filename=d['train_data_filename'], valid_data_filename=d['valid_data_filename'], current_epoch_num=0) if os.path.isdir(os.path.join(opts.exp_dir, 'code')): rmtree(os.path.join(opts.exp_dir, 'code')) os.makedirs(os.path.join(opts.exp_dir, 'code')) if not os.path.isdir(opts.exp_dir):
print('tissue_segment_dir: ' + d['tissue_segment_dir'], flush=True) print('detection_results_path:' + d['detection_results_path'], flush=True) print('file_name_pattern: ' + d['file_name_pattern'], flush=True) print('date: ' + d['date'], flush=True) print('exp_dir: ' + d['exp_dir'], flush=True) opts = NetworkOptions.NetworkOptions( exp_dir=d['exp_dir'], num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=51, image_width=51, in_feat_dim=int(d['in_feat_dim']), in_label_dim=1, num_of_classes=int(d['num_of_classes']), batch_size=500, data_dir=data_dir, results_dir=d['results_dir'], detection_results_path=d['detection_results_path'], tissue_segment_dir=d['tissue_segment_dir'], preprocessed_dir=d['preprocessed_dir'], current_epoch_num=0, file_name_pattern=d['file_name_pattern'], color_code_file=d['color_code_file'], pre_process=True) opts.results_dir = os.path.join(opts.results_dir, d['date']) opts.preprocessed_dir = os.path.join(opts.preprocessed_dir, d['date']) if not os.path.isdir(opts.results_dir): os.makedirs(opts.results_dir, exist_ok=True)
import mimo_net from subpackages import NetworkOptions # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # os.environ["CUDA_VISIBLE_DEVICES"] = "1" opts = NetworkOptions.NetworkOptions( exp_dir='ExpDir/', num_examples_per_epoch_train=1, num_examples_per_epoch_valid=1, image_height=508, image_width=508, label_height=508, label_width=508, in_feat_dim=3, in_label_dim=4, num_of_classes=2, batch_size=1, data_dir='R:\\tracerx\\Melanoma\\Quad\\data\\cws', results_dir='R:\\tracerx\\Melanoma\\Quad\\results\\' 'tissue_segmentation', current_epoch_num=0, file_name_pattern='*.ndpi', pre_process=True, ) opts.results_dir = (os.path.join(opts.results_dir, '20171019')) if not os.path.isdir(opts.results_dir): os.makedirs(opts.results_dir) os.makedirs(os.path.join(opts.results_dir, 'mat')) os.makedirs(os.path.join(opts.results_dir, 'annotated_images'))