Exemple #1
0
    def fit(self, x_train, y_train):
        self._train_le(y_train)
        self.n_samples = len(x_train)
        self.sub_basis = pca_for_sets(
            x_train, self.n_sdim, self.p_norm
        ).contiguous()

        self._fit(x_train, y_train)

        gpu_free()
Exemple #2
0
    def predict_proba(self, x_pred):
        sub_basis = pca_for_sets(x_pred, self.n_sdim, self.p_norm)
        sim, _, _ = subspacea_subs(self.sub_basis, sub_basis, self.metric_mat,
                                   False)

        sim = sim.cpu().numpy()
        sim = self.lda.transform(sim.T)
        sim = l2dist(self.dic, sim)

        pred = [
            1 / (1e-10 + np.min(sim[self.labels == i, :], axis=0))
            for i in range(self.n_classes)
        ]
        return np.asarray(pred)
    def _fit(self, x_train, y_train):
        cls_data = [
            torch.cat(
                [x_train[j]
                 for j in range(len(y_train)) if y_train[j] == i], 1)
            for i in set(y_train)
        ]
        sub_basis = (pca_for_sets(cls_data, self.n_sdim,
                                  self.p_norm).contiguous().permute((2, 0, 1)))

        gram_mat = (sub_basis @ sub_basis.permute((0, 2, 1))).sum(0)
        full_dim = torch.matrix_rank(gram_mat)
        _, eig_vec = torch.symeig(gram_mat, eigenvectors=True)
        eig_vec = eig_vec.flip(1)[:, self.n_reducedim:full_dim]
        self.metric_mat = eig_vec @ eig_vec.T
        self.dic = ortha_subs(self.sub_basis, self.metric_mat)
Exemple #4
0
    def predict_proba(self, x_pred, ret_kmat=False):
        if self.reddim_mat is not None:
            if self.reddim_mat.shape[0] != self.reddim_mat.shape[1]:
                x_pred = [self.reddim_mat @ i for i in x_pred]
        sub_basis = pca_for_sets(x_pred, self.n_sdim, self.p_norm)
        sub_basis = ortha_subs(sub_basis, self.metric_mat)
        sim, _, _ = subspacea_subs(self.dic, sub_basis, self.metric_mat, False)

        sim = sim.cpu().numpy()
        pred = [
            np.max(sim[self.labels == i, :], axis=0)
            for i in range(self.n_classes)
        ]

        if ret_kmat:
            return np.asarray(pred), sim

        return np.asarray(pred)