Exemple #1
0
 def setUp(self):
     study_configuration_json = {
         "goal":
         "MAXIMIZE",
         "maxTrials":
         5,
         "maxParallelTrials":
         1,
         "randomInitTrials":
         1,
         "params": [{
             "parameterName": "hidden2",
             "type": "DISCRETE",
             "feasiblePoints": "8, 16, 32, 64",
             "scalingType": "LINEAR"
         }, {
             "parameterName": "optimizer",
             "type": "CATEGORICAL",
             "feasiblePoints": "sgd, adagrad, adam, ftrl",
             "scalingType": "LINEAR"
         }]
     }
     study_configuration = json.dumps(study_configuration_json)
     self.study = Study.create("ChocolateGridSearchStudy",
                               study_configuration)
 def setUp(self):
     study_configuration_json = {
         "goal":
         "MAXIMIZE",
         "maxTrials":
         5,
         "maxParallelTrials":
         1,
         "params": [{
             "parameterName": "hidden1",
             "type": "INTEGER",
             "minValue": 40,
             "maxValue": 400,
             "scallingType": "LINEAR"
         }]
     }
     study_configuration = json.dumps(study_configuration_json)
     self.study = Study.create("RandomSearchStudy", study_configuration)
     trial1 = Trial.create(self.study.id, "RandomSearchTrial1")
     trial2 = Trial.create(self.study.id, "RandomSearchTrial2")
     self.trials = [trial1, trial2]
     TrialMetric.create(trial1.id, 10, 0.5)
     TrialMetric.create(trial1.id, 20, 0.6)
     TrialMetric.create(trial2.id, 10, 0.6)
     TrialMetric.create(trial2.id, 20, 0.5)
Exemple #3
0
    def create_study(self,
                     study_name,
                     study_configuration,
                     algorithm="BayesianOptimization"):
        study = Study.create(study_name, study_configuration, algorithm)

        return study
Exemple #4
0
 def setUp(self):
   study_configuration_json = {
       "goal":
       "MAXIMIZE",
       "maxTrials":
       5,
       "maxParallelTrials":
       1,
       "randomInitTrials":
       1,
       "params": [{
           "parameterName": "l1_normalization",
           "type": "DOUBLE",
           "minValue": 0.01,
           "maxValue": 0.99,
           "scalingType": "LINEAR"
       }, {
           "parameterName": "learning_rate",
           "type": "DOUBLE",
           "minValue": 0.01,
           "maxValue": 0.5,
           "scalingType": "LINEAR"
       }]
   }
   study_configuration = json.dumps(study_configuration_json)
   self.study = Study.create("TpeStudy", study_configuration)
 def setUp(self):
     study_configuration_json = {
         "goal":
         "MAXIMIZE",
         "maxTrials":
         5,
         "maxParallelTrials":
         1,
         "randomInitTrials":
         1,
         "params": [{
             "parameterName": "hidden1",
             "type": "INTEGER",
             "minValue": 1,
             "maxValue": 10,
             "scalingType": "LINEAR"
         }, {
             "parameterName": "learning_rate",
             "type": "DOUBLE",
             "minValue": 0.01,
             "maxValue": 0.5,
             "scalingType": "LINEAR"
         }]
     }
     study_configuration = json.dumps(study_configuration_json)
     self.study = Study.create("SkoptBayesianOptimizationStudy",
                               study_configuration)
 def setUp(self):
   study_configuration_json = {
       "goal":
       "MAXIMIZE",
       "maxTrials":
       5,
       "maxParallelTrials":
       1,
       "params": [{
           "parameterName": "hidden1",
           "type": "INTEGER",
           "minValue": 40,
           "maxValue": 400,
           "scallingType": "LINEAR"
       }]
   }
   study_configuration = json.dumps(study_configuration_json)
   self.study = Study.create("RandomSearchStudy", study_configuration)
   trial1 = Trial.create(self.study.id, "RandomSearchTrial1")
   trial2 = Trial.create(self.study.id, "RandomSearchTrial2")
   self.trials = [trial1, trial2]
   TrialMetric.create(trial1.id, 10, 0.5)
   TrialMetric.create(trial1.id, 20, 0.6)
   TrialMetric.create(trial2.id, 10, 0.6)
   TrialMetric.create(trial2.id, 20, 0.5)
Exemple #7
0
def v1_studies(request):

  # Create the study
  if request.method == "POST":
    data = json.loads(request.body)
    name = data["name"]
    study_configuration = json.dumps(data["study_configuration"])
    algorithm = data.get("algorithm", "RandomSearchAlgorithm")

    study = Study.create(name, study_configuration, algorithm)
    return JsonResponse({"data": study.to_json()})

  # List the studies
  elif request.method == "GET":
    studies = Study.objects.all()
    response_data = [study.to_json() for study in studies]
    return JsonResponse({"data": response_data})
  else:
    return JsonResponse({"error": "Unsupported http method"})
Exemple #8
0
 def setUp(self):
   study_configuration_json = {
       "goal":
       "MAXIMIZE",
       "maxTrials":
       5,
       "maxParallelTrials":
       1,
       "params": [{
           "parameterName": "hidden1",
           "type": "INTEGER",
           "minValue": 40,
           "maxValue": 400,
           "scallingType": "LINEAR"
       }]
   }
   study_configuration = json.dumps(study_configuration_json)
   self.study = Study.create("GridSearchStudy", study_configuration)
   self.trials = []
Exemple #9
0
 def setUp(self):
     study_configuration_json = {
         "goal":
         "MAXIMIZE",
         "maxTrials":
         5,
         "maxParallelTrials":
         1,
         "params": [{
             "parameterName": "hidden1",
             "type": "INTEGER",
             "minValue": 40,
             "maxValue": 400,
             "scallingType": "LINEAR"
         }]
     }
     study_configuration = json.dumps(study_configuration_json)
     self.study = Study.create("GridSearchStudy", study_configuration)
     self.trials = []
 def setUp(self):
     study_configuration_json = {
         "goal":
         "MAXIMIZE",
         "maxTrials":
         5,
         "maxParallelTrials":
         1,
         "randomInitTrials":
         1,
         "params": [{
             "parameterName": "hidden1",
             "type": "INTEGER",
             "minValue": 1,
             "maxValue": 10,
             "scalingType": "LINEAR"
         }, {
             "parameterName": "learning_rate",
             "type": "DOUBLE",
             "minValue": 0.01,
             "maxValue": 0.5,
             "scalingType": "LINEAR"
         }, {
             "parameterName": "hidden2",
             "type": "DISCRETE",
             "feasiblePoints": "8, 16, 32, 64",
             "scalingType": "LINEAR"
         }, {
             "parameterName": "optimizer",
             "type": "CATEGORICAL",
             "feasiblePoints": "sgd, adagrad, adam, ftrl",
             "scalingType": "LINEAR"
         }, {
             "parameterName": "batch_normalization",
             "type": "CATEGORICAL",
             "feasiblePoints": "true, false",
             "scalingType": "LINEAR"
         }]
     }
     study_configuration = json.dumps(study_configuration_json)
     self.study = Study.create("RandomSearchStudy", study_configuration)