Exemple #1
0
def deconvolve(mat, fs, tau = 1.5):
    #neucoeff = 0.7  # neuropil coefficient
    # for computing and subtracting baseline
    baseline = 'maximin'  # take the running max of the running min after smoothing with gaussian
    sig_baseline = 10.0  # in bins, standard deviation of gaussian with which to smooth
    win_baseline = 60.0  # in seconds, window in which to compute max/min filters

    ops = {'tau': tau, 'fs': fs, #'neucoeff': neucoeff,
           'baseline': baseline, 'sig_baseline': sig_baseline, 'win_baseline': win_baseline}
    # get spikes
    spks = dcnv.oasis(mat, ops)
    return spks
Exemple #2
0
def run_dcnv(opts):
    #% Set up paths:
    acquisition_dir = os.path.join(opts.rootdir, opts.animalid, opts.session,
                                   opts.acquisition)

    s2p_source_dir = os.path.join(acquisition_dir, opts.run, 'processed',
                                  opts.analysis, 'suite2p', 'plane0')

    #s2p files
    s2p_raw_trace_fn = os.path.join(s2p_source_dir, 'F.npy')
    s2p_np_trace_fn = os.path.join(s2p_source_dir, 'Fneu.npy')

    s2p_stat_fn = os.path.join(s2p_source_dir, 'stat.npy')
    s2p_ops_fn = os.path.join(s2p_source_dir, 'ops.npy')

    #load them in
    s2p_stat = np.load(s2p_stat_fn)
    s2p_ops = np.load(s2p_ops_fn).item()
    s2p_raw_trace_data = np.load(s2p_raw_trace_fn)
    s2p_np_trace_data = np.load(s2p_np_trace_fn)

    #doing spike deconv with correct tau param
    #from Dana et al (2018 paper):
    #In  agreement  with  the  cultured neuron results, jGCaMP7f has faster kinetics
    #than the other jGCaMP7 sensors and is comparable to GCaMP6f.
    #jGCaMP7s has slower decay time than all the other sensors (Fig. 5b)

    #therefore using same value for tau (decay constant) as suggested by Suite2p
    #for GCaMP6f data: 0.7
    s2p_ops['tau'] = 0.7

    #remove neuropil
    Fc0 = s2p_raw_trace_data - s2p_ops['neucoeff'] * s2p_np_trace_data
    #baseline operation
    Fc1 = dcnv.preprocess(Fc0, s2p_ops)

    print('Deconvoling trace')
    # get spikes
    spks = dcnv.oasis(Fc1, s2p_ops)

    # print(spks.shape)

    s2p_spks_fn = os.path.join(s2p_source_dir, 'spks.npy')
    print('Saving to: %s' % (s2p_spks_fn))
    np.save(s2p_spks_fn, spks)
Exemple #3
0
def run_s2p(ops={}, db={}):
    t0 = tic()
    ops0 = default_ops()
    ops = {**ops0, **ops}
    ops = {**ops, **db}
    print(db)
    if 'save_path0' not in ops or len(ops['save_path0']) == 0:
        if ('h5py' in ops) and len(ops['h5py']) > 0:
            ops['save_path0'], tail = os.path.split(ops['h5py'])
        else:
            ops['save_path0'] = ops['data_path'][0]

    # check if there are files already registered!
    fpathops1 = os.path.join(ops['save_path0'], 'suite2p', 'ops1.npy')
    if os.path.isfile(fpathops1):
        files_found_flag = True
        flag_binreg = True
        ops1 = np.load(fpathops1, allow_pickle=True)
        print('FOUND OPS IN %s' % ops1[0]['save_path'])
        for i, op in enumerate(ops1):
            # default behavior is to look in the ops
            flag_reg = os.path.isfile(op['reg_file'])
            if not flag_reg:
                # otherwise look in the user defined save_path0
                op['save_path'] = os.path.join(ops['save_path0'], 'suite2p',
                                               'plane%d' % i)
                op['ops_path'] = os.path.join(op['save_path'], 'ops.npy')
                op['reg_file'] = os.path.join(op['save_path'], 'data.bin')
                flag_reg = os.path.isfile(op['reg_file'])
            files_found_flag &= flag_reg
            if 'refImg' not in op or op['do_registration'] > 1:
                flag_binreg = False
                if i == len(ops1) - 1:
                    print(
                        "NOTE: not registered / registration forced with ops['do_registration']>1"
                    )
            # use the new False
            ops1[i] = {**op, **ops}.copy()
            # for mesoscope tiffs, preserve original lines, etc
            if 'lines' in op:
                ops1[i]['nrois'] = op['nrois']
                ops1[i]['nplanes'] = op['nplanes']
                ops1[i]['lines'] = op['lines']
                ops1[i]['dy'] = op['dy']
                ops1[i]['dx'] = op['dx']
                ops1[i]['iplane'] = op['iplane']

            #ops1[i] = ops1[i].copy()
            # except for registration results
            ops1[i]['xrange'] = op['xrange']
            ops1[i]['yrange'] = op['yrange']
    else:
        files_found_flag = False
        flag_binreg = False

    # if not set up files and copy tiffs/h5py to binary
    if not files_found_flag:
        # get default options
        ops0 = default_ops()
        # combine with user options
        ops = {**ops0, **ops}
        # copy tiff to a binary
        if len(ops['h5py']):
            ops1 = utils.h5py_to_binary(ops)
            print('time %4.2f sec. Wrote h5py to binaries for %d planes' %
                  (toc(t0), len(ops1)))
        else:
            if 'mesoscan' in ops and ops['mesoscan']:
                ops1 = utils.mesoscan_to_binary(ops)
                print('time %4.2f sec. Wrote tifs to binaries for %d planes' %
                      (toc(t0), len(ops1)))
            elif HAS_HAUS:
                print('time %4.2f sec. Using HAUSIO')
                dataset = haussio.load_haussio(ops['data_path'][0])
                ops1 = dataset.tosuite2p(ops)
                print('time %4.2f sec. Wrote data to binaries for %d planes' %
                      (toc(t0), len(ops1)))
            else:
                ops1 = utils.tiff_to_binary(ops)
                print('time %4.2f sec. Wrote tifs to binaries for %d planes' %
                      (toc(t0), len(ops1)))

        np.save(fpathops1, ops1)  # save ops1
    else:
        print('FOUND BINARIES: %s' % ops1[0]['reg_file'])

    ops1 = np.array(ops1)
    #ops1 = utils.split_multiops(ops1)
    if not ops['do_registration']:
        flag_binreg = True
    if flag_binreg:
        print('SKIPPING REGISTRATION...')
    if flag_binreg and not files_found_flag:
        print('NOTE: binary file created, but registration not performed')

    # set up number of CPU workers for registration and cell detection
    ipl = 0

    while ipl < len(ops1):
        print('>>>>>>>>>>>>>>>>>>>>> PLANE %d <<<<<<<<<<<<<<<<<<<<<<' % ipl)
        t1 = tic()
        if not flag_binreg:
            ######### REGISTRATION #########
            t11 = tic()
            print('----------- REGISTRATION')
            ops1[ipl] = register.register_binary(ops1[ipl])  # register binary
            np.save(fpathops1, ops1)  # save ops1
            print('Total %0.2f sec' % (toc(t11)))
        if 'roidetect' in ops1[ipl]:
            roidetect = ops['roidetect']
        else:
            roidetect = True
        if roidetect:
            ######## CELL DETECTION AND ROI EXTRACTION ##############
            t11 = tic()
            print('----------- ROI DETECTION AND EXTRACTION')
            ops1[ipl] = roiextract.roi_detect_and_extract(ops1[ipl])
            ops = ops1[ipl]
            fpath = ops['save_path']
            print('Total %0.2f sec.' % (toc(t11)))

            ######### SPIKE DECONVOLUTION ###############
            t11 = tic()
            print('----------- SPIKE DECONVOLUTION')
            F = np.load(os.path.join(fpath, 'F.npy'))
            Fneu = np.load(os.path.join(fpath, 'Fneu.npy'))
            dF = F - ops['neucoeff'] * Fneu
            spks = dcnv.oasis(dF, ops)
            np.save(os.path.join(ops['save_path'], 'spks.npy'), spks)
            print('Total %0.2f sec.' % (toc(t11)))

            # save as matlab file
            if ('save_mat' in ops) and ops['save_mat']:
                stat = np.load(os.path.join(fpath, 'stat.npy'),
                               allow_pickle=True)
                iscell = np.load(os.path.join(fpath, 'iscell.npy'))
                matpath = os.path.join(ops['save_path'], 'Fall.mat')
                io.savemat(
                    matpath, {
                        'stat': stat,
                        'ops': ops,
                        'F': F,
                        'Fneu': Fneu,
                        'spks': spks,
                        'iscell': iscell
                    })
        else:
            print("WARNING: skipping cell detection (ops['roidetect']=False)")
        print(
            'Plane %d out of %d planes processed in %0.2f sec (can open in GUI).'
            % (ipl, len(ops1), toc(t1)))
        print('total = %0.2f sec.' % (toc(t0)))
        ipl += 1  #len(ipl)

    # save final ops1 with all planes
    np.save(fpathops1, ops1)

    #### COMBINE PLANES or FIELDS OF VIEW ####
    if len(ops1) > 1 and ops1[0]['combined'] and roidetect:
        utils.combined(ops1)

    # running a clean up script
    if 'clean_script' in ops1[0]:
        print('running clean-up script')
        os.system('python ' + ops['clean_script'] + ' ' + fpathops1)

    for ops in ops1:
        if ('delete_bin' in ops) and ops['delete_bin']:
            os.remove(ops['reg_file'])
            if ops['nchannels'] > 1:
                os.remove(ops['reg_file_chan2'])

    print('TOTAL RUNTIME %0.2f sec' % toc(t0))
    return ops1
Exemple #4
0
def masks_and_traces(ops, stat, stat_orig):
    ''' main extraction function
        inputs: ops and stat
        creates cell and neuropil masks and extracts traces
        returns: F (ROIs x time), Fneu (ROIs x time), F_chan2, Fneu_chan2, ops, stat
        F_chan2 and Fneu_chan2 will be empty if no second channel
    '''
    t0 = time.time()
    # Concatenate stat so a good neuropil function can be formed
    stat_all = stat.copy()
    for n in range(len(stat_orig)):
        stat_all.append(stat_orig[n])
    stat_all, cell_pix, _ = roiextract.create_cell_masks(ops, stat_all)
    stat = stat_all[:len(stat)]

    neuropil_masks = roiextract.create_neuropil_masks(ops, stat, cell_pix)
    Ly = ops['Ly']
    Lx = ops['Lx']
    neuropil_masks = np.reshape(neuropil_masks, (-1, Ly * Lx))

    stat0 = []
    for n in range(len(stat)):
        stat0.append({
            'ipix': stat[n]['ipix'],
            'lam': stat[n]['lam'] / stat[n]['lam'].sum()
        })
    print('Masks made in %0.2f sec.' % (time.time() - t0))

    F, Fneu, ops = roiextract.extractF(ops, stat0, neuropil_masks,
                                       ops['reg_file'])
    if 'reg_file_chan2' in ops:
        F_chan2, Fneu_chan2, ops2 = roiextract.extractF(
            ops.copy(), stat0, neuropil_masks, ops['reg_file_chan2'])
        ops['meanImg_chan2'] = ops2['meanImg_chan2']
    else:
        F_chan2, Fneu_chan2 = [], []

    # compute activity statistics for classifier
    npix = np.array([stat_orig[n]['npix']
                     for n in range(len(stat_orig))]).astype('float32')
    for n in range(len(stat)):
        stat[n]['npix_norm'] = stat[n]['npix'] / np.mean(
            npix[:100])  # What if there are less than 100 cells?
        stat[n]['compact'] = 1
        stat[n]['footprint'] = 2
        stat[n]['Manual'] = 1  # Add manual key

    # subtract neuropil and compute skew, std from F
    dF = F - ops['neucoeff'] * Fneu
    sk = stats.skew(dF, axis=1)
    sd = np.std(dF, axis=1)
    for n in range(F.shape[0]):
        stat[n]['skew'] = sk[n]
        stat[n]['std'] = sd[n]
        stat[n]['med'] = [np.mean(stat[n]['ypix']), np.mean(stat[n]['xpix'])]

    dF = F - ops['neucoeff'] * Fneu
    spks = dcnv.oasis(dF, ops)

    # print('Ftrace size', np.shape(Fneu), np.shape(F))
    return F, Fneu, F_chan2, Fneu_chan2, spks, ops, stat
Exemple #5
0
def run_s2p(ops={}, db={}):
    i0 = tic()
    ops0 = default_ops()
    ops = {**ops0, **ops}
    ops = {**ops, **db}
    if 'save_path0' not in ops or len(ops['save_path0']) == 0:
        if ('h5py' in ops) and len(ops['h5py']) > 0:
            ops['save_path0'], tail = os.path.split(ops['h5py'])
        else:
            ops['save_path0'] = ops['data_path'][0]
    # check if there are files already registered
    fpathops1 = os.path.join(ops['save_path0'], 'suite2p', 'ops1.npy')
    if os.path.isfile(fpathops1):
        files_found_flag = True
        flag_binreg = True
        ops1 = np.load(fpathops1)
        for i, op in enumerate(ops1):
            # default behavior is to look in the ops
            flag_reg = os.path.isfile(op['reg_file'])
            if not flag_reg:
                # otherwise look in the user defined save_path0
                op['save_path'] = os.path.join(ops['save_path0'], 'suite2p',
                                               'plane%d' % i)
                op['ops_path'] = os.path.join(op['save_path'], 'ops.npy')
                op['reg_file'] = os.path.join(op['save_path'], 'data.bin')
                flag_reg = os.path.isfile(op['reg_file'])
            files_found_flag &= flag_reg
            if 'refImg' not in op:
                flag_binreg = False
            # use the new options
            ops1[i] = {**op, **ops}.copy()
            #ops1[i] = ops1[i].copy()
            print(ops1[i]['save_path'])
            # except for registration results
            ops1[i]['xrange'] = op['xrange']
            ops1[i]['yrange'] = op['yrange']
    else:
        files_found_flag = False
        flag_binreg = False
    ######### REGISTRATION #########
    if not files_found_flag:
        # get default options
        ops0 = default_ops()
        # combine with user options
        ops = {**ops0, **ops}
        # copy tiff to a binary
        if len(ops['h5py']):
            ops1 = utils.h5py_to_binary(ops)
            print('time %4.4f. Wrote h5py to binaries for %d planes' %
                  (toc(i0), len(ops1)))
        else:
            if 'mesoscan' in ops and ops['mesoscan']:
                ops1 = utils.mesoscan_to_binary(ops)
                print('time %4.4f. Wrote tifs to binaries for %d planes' %
                      (toc(i0), len(ops1)))
            elif HAS_HAUS:
                print('time %4.4f. Using HAUSIO')
                dataset = haussio.load_haussio(ops['data_path'][0])
                ops1 = dataset.tosuite2p(ops)
                print('time %4.4f. Wrote data to binaries for %d planes' %
                      (toc(i0), len(ops1)))
            else:
                ops1 = utils.tiff_to_binary(ops)
                print('time %4.4f. Wrote tifs to binaries for %d planes' %
                      (toc(i0), len(ops1)))
        np.save(fpathops1, ops1)  # save ops1
    ops1 = np.array(ops1)
    ops1 = utils.split_multiops(ops1)
    if not ops['do_registration']:
        flag_binreg = True
    if files_found_flag:
        print('found ops1 and binaries')
        print(ops1[0]['reg_file'])
    if flag_binreg:
        print('foundpre-registered binaries')
        print('skipping registration...')
    if flag_binreg and not files_found_flag:
        print('binary file created, but registration not performed')
    if len(ops1) > 1 and ops['num_workers_roi'] >= 0:
        if ops['num_workers_roi'] == 0:
            ops['num_workers_roi'] = len(ops1)
        ni = ops['num_workers_roi']
    else:
        ni = 1
    ik = 0
    while ik < len(ops1):
        ipl = ik + np.arange(0, min(ni, len(ops1) - ik))
        if not flag_binreg:
            ops1[ipl] = register.register_binary(ops1[ipl])  # register binary
            np.save(fpathops1, ops1)  # save ops1
            print('time %4.4f. Registration complete for %d planes' %
                  (toc(i0), ni))
        if ni > 1:
            with Pool(len(ipl)) as p:
                ops1[ipl] = p.map(utils.get_cells, ops1[ipl])
        else:
            ops1[ipl[0]] = utils.get_cells(ops1[ipl[0]])
        for ops in ops1[ipl]:
            fpath = ops['save_path']
            F = np.load(os.path.join(fpath, 'F.npy'))
            Fneu = np.load(os.path.join(fpath, 'Fneu.npy'))
            dF = F - ops['neucoeff'] * Fneu
            spks = dcnv.oasis(dF, ops)
            np.save(os.path.join(ops['save_path'], 'spks.npy'), spks)
            print('time %4.4f. Detected spikes in %d ROIs' %
                  (toc(i0), F.shape[0]))
            stat = np.load(os.path.join(fpath, 'stat.npy'))
            # apply default classifier
            classfile = os.path.join(
                os.path.abspath(os.path.dirname(__file__)),
                'classifiers/classifier_user.npy')
            print(classfile)
            iscell = classifier.run(classfile, stat)
            np.save(os.path.join(ops['save_path'], 'iscell.npy'), iscell)
            # save as matlab file
            if ('save_mat' in ops) and ops['save_mat']:
                matpath = os.path.join(ops['save_path'], 'Fall.mat')
                io.savemat(
                    matpath, {
                        'stat': stat,
                        'ops': ops,
                        'F': F,
                        'Fneu': Fneu,
                        'spks': spks,
                        'iscell': iscell
                    })
        ik += len(ipl)

    # save final ops1 with all planes
    np.save(fpathops1, ops1)

    #### COMBINE PLANES or FIELDS OF VIEW ####
    if len(ops1) > 1 and ops1[0]['combined']:
        utils.combined(ops1)

    # running a clean up script
    if 'clean_script' in ops1[0]:
        print('running clean-up script')
        os.system('python ' + ops['clean_script'] + ' ' + fpathops1)

    for ops in ops1:
        if ('delete_bin' in ops) and ops['delete_bin']:
            os.remove(ops['reg_file'])
            if ops['nchannels'] > 1:
                os.remove(ops['reg_file_chan2'])

    print('finished all tasks in total time %4.4f sec' % toc(i0))
    return ops1
Exemple #6
0
def run_s2p(ops={}, db={}):
    i0 = tic()
    ops = {**ops, **db}
    if 'save_path0' not in ops or len(ops['save_path0']) == 0:
        ops['save_path0'] = ops['data_path'][0]
    # check if there are files already registered
    fpathops1 = os.path.join(ops['save_path0'], 'suite2p', 'ops1.npy')
    if os.path.isfile(fpathops1):
        files_found_flag = True
        flag_binreg = True
        ops1 = np.load(fpathops1)
        for i, op in enumerate(ops1):
            # default behavior is to look in the ops
            flag_reg = os.path.isfile(op['reg_file'])
            if not flag_reg:
                # otherwise look in the user defined save_path0
                op['save_path'] = os.path.join(ops['save_path0'], 'suite2p',
                                               'plane%d' % i)
                op['ops_path'] = os.path.join(op['save_path'], 'ops.npy')
                op['reg_file'] = os.path.join(op['save_path'], 'data.bin')
                flag_reg = os.path.isfile(op['reg_file'])
            files_found_flag &= flag_reg
            if 'refImg' not in op:
                flag_binreg = False
            # use the new options
            ops1[i] = {**op, **ops}
            ops1[i] = ops1[i].copy()
            print(ops1[i]['save_path'])
            # except for registration results
            ops1[i]['xrange'] = op['xrange']
            ops1[i]['yrange'] = op['yrange']
    else:
        files_found_flag = False
        flag_binreg = False
    ######### REGISTRATION #########
    if not files_found_flag:
        # get default options
        ops0 = default_ops()
        # combine with user options
        ops = {**ops0, **ops}
        # copy tiff to a binary
        if len(ops['h5py']):
            ops1 = utils.h5py_to_binary(ops)
            print('time %4.4f. Wrote h5py to binaries for %d planes' %
                  (toc(i0), len(ops1)))
        else:
            ops1 = utils.tiff_to_binary(ops)
            print('time %4.4f. Wrote tifs to binaries for %d planes' %
                  (toc(i0), len(ops1)))
        # save ops1
        np.save(fpathops1, ops1)
    if not flag_binreg:
        ops1 = register.register_binary(ops1)  # register tiff
        np.save(fpathops1, ops1)  # save ops1
        print('time %4.4f. Registration complete' % toc(i0))
    else:
        print('found ops1 and pre-registered binaries')
        print(ops1[0]['reg_file'])
        print('overwriting ops1 with new ops')
        print('skipping registration...')
    ######### CELL DETECTION #########
    if len(ops1) > 1 and ops['num_workers_roi'] >= 0:
        if ops['num_workers_roi'] == 0:
            ops['num_workers_roi'] = len(ops1)
        with Pool(ops['num_workers_roi']) as p:
            ops1 = p.map(utils.get_cells, ops1)
    else:
        for k in range(len(ops1)):
            ops1[k] = utils.get_cells(ops1[k])
    ######### SPIKE DECONVOLUTION AND CLASSIFIER #########
    for ops in ops1:
        fpath = ops['save_path']
        F = np.load(os.path.join(fpath, 'F.npy'))
        Fneu = np.load(os.path.join(fpath, 'Fneu.npy'))
        dF = F - ops['neucoeff'] * Fneu
        spks = dcnv.oasis(dF, ops)
        np.save(os.path.join(ops['save_path'], 'spks.npy'), spks)
        print('time %4.4f. Detected spikes in %d ROIs' % (toc(i0), F.shape[0]))
        stat = np.load(os.path.join(fpath, 'stat.npy'))
        # apply default classifier
        classfile = os.path.join(os.path.abspath(os.path.dirname(__file__)),
                                 'classifiers/classifier_user.npy')
        print(classfile)
        iscell = classifier.run(classfile, stat)
        np.save(os.path.join(ops['save_path'], 'iscell.npy'), iscell)
        # save as matlab file
        if ('save_mat' in ops) and ops['save_mat']:
            matpath = os.path.join(ops['save_path'], 'Fall.mat')
            scipy.io.savemat(
                matpath, {
                    'stat': stat,
                    'ops': ops,
                    'F': F,
                    'Fneu': Fneu,
                    'spks': spks,
                    'iscell': iscell
                })

    # save final ops1 with all planes
    np.save(fpathops1, ops1)

    #### COMBINE PLANES or FIELDS OF VIEW ####
    if len(ops1) > 1 and ops1[0]['combined']:
        utils.combined(ops1)

    for ops in ops1:
        if ('delete_bin' in ops) and ops['delete_bin']:
            os.remove(ops['reg_file'])
            if ops['nchannels'] > 1:
                os.remove(ops['reg_file_chan2'])

    print('finished all tasks in total time %4.4f sec' % toc(i0))
    return ops1
Exemple #7
0
def activity_stats(parent):
    i0 = int(1 - parent.iscell[parent.ichosen])
    ypix = np.array([])
    xpix = np.array([])
    lam = np.array([])
    footprints = np.array([])
    F = np.zeros((0, parent.Fcell.shape[1]), np.float32)
    Fneu = np.zeros((0, parent.Fcell.shape[1]), np.float32)
    for n in np.array(parent.imerge):
        ypix = np.append(ypix, parent.stat[n]["ypix"])
        xpix = np.append(xpix, parent.stat[n]["xpix"])
        lam = np.append(lam, parent.stat[n]["lam"])
        footprints = np.append(footprints, parent.stat[n]["footprint"])
        F = np.append(F, parent.Fcell[n, :][np.newaxis, :], axis=0)
        Fneu = np.append(Fneu, parent.Fneu[n, :][np.newaxis, :], axis=0)

    # remove overlaps
    ipix = np.concatenate((ypix[:, np.newaxis], xpix[:, np.newaxis]), axis=1)
    _, goodi = np.unique(ipix, return_index=True, axis=0)
    ypix = ypix[goodi]
    xpix = xpix[goodi]
    lam = lam[goodi]
    stat0 = {}
    stat0["ypix"] = ypix.astype(np.int32)
    stat0["xpix"] = xpix.astype(np.int32)
    stat0["lam"] = lam
    stat0['med'] = [np.median(stat0["ypix"]), np.median(stat0["xpix"])]
    stat0["npix"] = ypix.size
    d0 = parent.ops["diameter"]
    radius = utils.fitMVGaus(ypix / d0[0], xpix / d0[1], lam, 2)[2]
    stat0["radius"] = radius[0] * d0.mean()
    stat0["aspect_ratio"] = 2 * radius[0] / (.01 + radius[0] + radius[1])
    npix = np.array([parent.stat[n]['npix']
                     for n in range(len(parent.stat))]).astype('float32')
    stat0["npix_norm"] = stat0["npix"] / npix.mean()
    # compactness
    rs, dy, dx = sparsedetect.circleMask(d0)
    rsort = np.sort(rs.flatten())
    r2 = ((ypix - stat0["med"][0]) / d0[0])**2 + (
        (xpix - stat0["med"][1]) / d0[1])**2
    r2 = r2**.5
    stat0["mrs"] = np.mean(r2)
    stat0["mrs0"] = np.mean(rsort[:r2.size])
    stat0["compact"] = stat0["mrs"] / (1e-10 + stat0["mrs0"])
    # footprint
    stat0["footprint"] = footprints.mean()
    F = F.mean(axis=0)
    Fneu = Fneu.mean(axis=0)
    dF = F - parent.ops["neucoeff"] * Fneu
    # activity stats
    stat0["skew"] = stats.skew(dF)
    stat0["std"] = dF.std()
    # compute outline and circle around cell
    iext = fig.boundary(ypix, xpix)
    stat0["yext"] = ypix[iext]
    stat0["xext"] = xpix[iext]
    ycirc, xcirc = fig.circle(stat0["med"], stat0["radius"])
    goodi = ((ycirc >= 0)
             & (xcirc >= 0)
             & (ycirc < parent.ops["Ly"])
             & (xcirc < parent.ops["Lx"]))
    stat0["ycirc"] = ycirc[goodi]
    stat0["xcirc"] = xcirc[goodi]
    # deconvolve activity
    spks = dcnv.oasis(dF[np.newaxis, :], parent.ops)
    # add cell to structs
    parent.stat = np.concatenate((parent.stat, np.array([stat0])), axis=0)
    print(parent.stat[-1]["ypix"].shape)
    parent.Fcell = np.concatenate((parent.Fcell, F[np.newaxis, :]), axis=0)
    parent.Fneu = np.concatenate((parent.Fneu, Fneu[np.newaxis, :]), axis=0)
    parent.Spks = np.concatenate((parent.Spks, spks), axis=0)
    iscell = np.array([parent.iscell[parent.ichosen]], dtype=bool)
    parent.iscell = np.concatenate((parent.iscell, iscell), axis=0)
Exemple #8
0
def merge_activity_masks(parent):
    print('merging activity... this may take some time')
    i0      = int(1-parent.iscell[parent.ichosen])
    ypix = np.array([])
    xpix = np.array([])
    lam  = np.array([])
    footprints  = np.array([])
    F    = np.zeros((0,parent.Fcell.shape[1]), np.float32)
    Fneu = np.zeros((0,parent.Fcell.shape[1]), np.float32)
    probcell = []
    probredcell = []
    merged_cells = []
    remove_merged = []
    for n in np.array(parent.imerge):
        if len(parent.stat[n]['imerge']) > 0:
            remove_merged.append(n)
            for k in parent.stat[n]['imerge']:
                merged_cells.append(k)
        else:
            merged_cells.append(n)
    merged_cells = np.unique(np.array(merged_cells))

    for n in merged_cells:
        ypix = np.append(ypix, parent.stat[n]["ypix"])
        xpix = np.append(xpix, parent.stat[n]["xpix"])
        lam = np.append(lam, parent.stat[n]["lam"])
        footprints = np.append(footprints, parent.stat[n]["footprint"])
        F    = np.append(F, parent.Fcell[n,:][np.newaxis,:], axis=0)
        Fneu = np.append(Fneu, parent.Fneu[n,:][np.newaxis,:], axis=0)
        probcell.append(parent.probcell[n])
        probredcell.append(parent.probredcell[n])

    probcell = np.array(probcell)
    probredcell = np.array(probredcell)
    pmean = probcell.mean()
    prmean = probredcell.mean()

    # remove overlaps
    ipix = np.concatenate((ypix[:,np.newaxis], xpix[:,np.newaxis]), axis=1)
    _, goodi = np.unique(ipix, return_index=True, axis=0)
    ypix = ypix[goodi]
    xpix = xpix[goodi]
    lam = lam[goodi]

    stat0 = {}
    if 'aspect' in parent.ops:
        d0 = np.array([int(parent.ops['aspect']*10), 10])
    else:
        d0 = parent.ops['diameter']
        if isinstance(d0, int):
            d0 = [d0,d0]

    ### compute statistics of merges
    stat0["imerge"] = merged_cells
    stat0["ypix"] = ypix.astype(np.int32)
    stat0["xpix"] = xpix.astype(np.int32)
    stat0["lam"] = lam / lam.sum() * merged_cells.size
    stat0['med']  = [np.median(stat0["ypix"]), np.median(stat0["xpix"])]
    stat0["npix"] = ypix.size
    radius = utils.fitMVGaus(ypix/d0[0], xpix/d0[1], lam, 2)[2]
    stat0["radius"] = radius[0] * d0.mean()
    stat0["aspect_ratio"] = 2 * radius[0]/(.01 + radius[0] + radius[1])
    npix = np.array([parent.stat[n]['npix'] for n in range(len(parent.stat))]).astype('float32')
    stat0["npix_norm"] = stat0["npix"] / npix.mean()
    # compactness
    rs,dy,dx = sparsedetect.circleMask(d0)
    rsort = np.sort(rs.flatten())
    r2 = ((ypix - stat0["med"][0])/d0[0])**2 + ((xpix - stat0["med"][1])/d0[1])**2
    r2 = r2**.5
    stat0["mrs"]  = np.mean(r2)
    stat0["mrs0"] = np.mean(rsort[:r2.size])
    stat0["compact"] = stat0["mrs"] / (1e-10 + stat0["mrs0"])
    # footprint
    stat0["footprint"] = footprints.mean()
    # inmerge
    stat0["inmerge"] = 0

    ### compute activity of merged cells
    F = F.mean(axis=0)
    Fneu = Fneu.mean(axis=0)
    dF = F - parent.ops["neucoeff"]*Fneu
    # activity stats
    stat0["skew"] = stats.skew(dF)
    stat0["std"] = dF.std()

    ### for GUI drawing
    # compute outline and circle around cell
    iext = fig.boundary(ypix, xpix)
    stat0["yext"] = ypix[iext].astype(np.int32)
    stat0["xext"] = xpix[iext].astype(np.int32)
    ycirc, xcirc = fig.circle(stat0["med"], stat0["radius"])
    goodi = (
            (ycirc >= 0)
            & (xcirc >= 0)
            & (ycirc < parent.ops["Ly"])
            & (xcirc < parent.ops["Lx"])
            )
    stat0["ycirc"] = ycirc[goodi]
    stat0["xcirc"] = xcirc[goodi]
    # deconvolve activity
    spks = dcnv.oasis(dF[np.newaxis, :], parent.ops)

    ### remove previously merged cell (do not replace)
    for k in remove_merged:
        remove_mask(parent, k)
        np.delete(parent.stat, k, 0)
        np.delete(parent.Fcell, k, 0)
        np.delete(parent.Fneu, k, 0)
        np.delete(parent.Spks, k, 0)
        np.delete(parent.iscell, k, 0)
        np.delete(parent.probcell, k, 0)
        np.delete(parent.probredcell, k, 0)
        np.delete(parent.redcell, k, 0)
        np.delete(parent.notmerged, k, 0)

    # add cell to structs
    parent.stat = np.concatenate((parent.stat, np.array([stat0])), axis=0)
    parent.stat = sparsedetect.get_overlaps(parent.stat, parent.ops)
    parent.stat = np.array(parent.stat)
    parent.Fcell = np.concatenate((parent.Fcell, F[np.newaxis,:]), axis=0)
    parent.Fneu = np.concatenate((parent.Fneu, Fneu[np.newaxis,:]), axis=0)
    parent.Spks = np.concatenate((parent.Spks, spks), axis=0)
    iscell = np.array([parent.iscell[parent.ichosen]], dtype=bool)
    parent.iscell = np.concatenate((parent.iscell, iscell), axis=0)
    parent.probcell = np.append(parent.probcell, pmean)
    parent.probredcell = np.append(parent.probredcell, prmean)
    parent.redcell = np.append(parent.redcell, prmean > parent.chan2prob)
    parent.notmerged = np.append(parent.notmerged, False)

    # recompute binned F
    parent.mode_change(parent.activityMode)

    for n in merged_cells:
        parent.stat[n]['inmerge'] = parent.stat.size-1

    add_mask(parent, parent.iscell.size-1)