def diffrot_map(smap, time=None, dt=None, pad=False, **diffrot_kwargs): """ Function to apply solar differential rotation to a sunpy map. Parameters ---------- smap : `~sunpy.map` Original map that we want to transform. time : sunpy-compatible time date/time at which the input co-ordinate will be rotated to. dt : `~astropy.units.Quantity` or `datetime` Desired interval between the input map and returned map. pad : `bool` Whether to create a padded map for submaps to don't loose data Returns ------- diffrot_map : `~sunpy.map` A map with the result of applying solar differential rotation to the input map. """ if (time is not None) and (dt is not None): raise ValueError('Only a time or an interval is accepted') elif not (time or dt): raise ValueError( 'Either a time or an interval (`dt=`) needs to be provided') elif time: new_time = parse_time(time) dt = (new_time - smap.date).total_seconds() * u.s else: new_time = smap.date + datetime.timedelta(seconds=dt.to(u.s).value) # Check for masked maps if smap.mask is not None: smap_data = np.ma.array(smap.data, mask=smap.mask) else: smap_data = smap.data submap = False # Check whether the input is a submap if ((2 * smap.rsun_obs > smap.top_right_coord.Tx - smap.bottom_left_coord.Tx) or (2 * smap.rsun_obs > smap.top_right_coord.Ty - smap.bottom_left_coord.Ty)): submap = True if pad: # Calculating the largest distance between the corners and their rotation values deltax = deltay = 0 for corner in product(*product([0 * u.pix], smap.dimensions)): corner_world = smap.pixel_to_world(*corner) corner_world_rotated = solar_rotate_coordinate( corner_world, new_time, **diffrot_kwargs) corner_px_rotated = smap.world_to_pixel(corner_world_rotated) dx = np.abs(corner_px_rotated.x - corner[0]) dy = np.abs(corner_px_rotated.y - corner[1]) deltax = dx if dx > deltax else deltax deltay = dy if dy > deltay else deltay deltax = np.int(np.ceil(deltax.value)) deltay = np.int(np.ceil(deltay.value)) # Create a new `smap` with the padding around it smap_data = np.pad(smap.data, ((deltay, deltay), (deltax, deltax)), 'constant', constant_values=0) smap_meta = deepcopy(smap.meta) smap_meta['naxis2'], smap_meta['naxis1'] = smap_data.shape smap_meta['crpix1'] += deltax smap_meta['crpix2'] += deltay smap = sunpy.map.Map(smap_data, smap_meta) warp_args = {'smap': smap, 'dt': dt} warp_args.update(diffrot_kwargs) # Apply solar differential rotation as a scikit-image warp out = transform.warp(to_norm(smap_data), inverse_map=_warp_sun_coordinates, map_args=warp_args) # Recover the original intensity range. out = un_norm(out, smap.data) # Update the meta information with the new date and time, and reference pixel. out_meta = deepcopy(smap.meta) if out_meta.get('date_obs', False): del out_meta['date_obs'] out_meta['date-obs'] = "{:%Y-%m-%dT%H:%M:%S}".format(new_time) if submap: crval_rotated = solar_rotate_coordinate(smap.reference_coordinate, new_time, **diffrot_kwargs) out_meta['crval1'] = crval_rotated.Tx.value out_meta['crval2'] = crval_rotated.Ty.value return sunpy.map.Map((out, out_meta))
def test_to_norm(): array_simple = np.array([10., 20., 30., 100.]) assert_allclose(to_norm(array_simple), np.array([0.1, 0.2, 0.3, 1.])) array_simple_neg = np.array([-10., 0., 10., 90.]) assert_allclose(to_norm(array_simple_neg), np.array([0, 0.1, 0.2, 1.]))
def diffrot_map(smap, time=None, dt: u.s=None, pad=False, **diffrot_kwargs): """ Function to apply solar differential rotation to a sunpy map. Parameters ---------- smap : `~sunpy.map` Original map that we want to transform. time : sunpy-compatible time date/time at which the input co-ordinate will be rotated to. dt : `~astropy.units.Quantity` or `astropy.time.Time` Desired interval between the input map and returned map. pad : `bool` Whether to create a padded map for submaps to don't loose data Returns ------- diffrot_map : `~sunpy.map` A map with the result of applying solar differential rotation to the input map. """ # Only this function needs scikit image from skimage import transform from sunpy.image.util import to_norm, un_norm # Import map here for performance reasons. import sunpy.map if (time is not None) and (dt is not None): raise ValueError('Only a time or an interval is accepted') elif not (time or dt): raise ValueError('Either a time or an interval (`dt=`) needs to be provided') elif time: new_time = parse_time(time) dt = (new_time - smap.date).to(u.s) else: new_time = smap.date + dt # Check for masked maps if smap.mask is not None: smap_data = np.ma.array(smap.data, mask=smap.mask) else: smap_data = smap.data submap = False # Check whether the input is a submap if ((2 * smap.rsun_obs > smap.top_right_coord.Tx - smap.bottom_left_coord.Tx) or (2 * smap.rsun_obs > smap.top_right_coord.Ty - smap.bottom_left_coord.Ty)): submap = True if pad: # Calculating the largest distance between the corners and their rotation values deltax = deltay = 0 for corner in product(*product([0 * u.pix], smap.dimensions)): corner_world = smap.pixel_to_world(*corner) corner_world_rotated = solar_rotate_coordinate(corner_world, new_time, **diffrot_kwargs) corner_px_rotated = smap.world_to_pixel(corner_world_rotated) dx = np.abs(corner_px_rotated.x - corner[0]) dy = np.abs(corner_px_rotated.y - corner[1]) deltax = dx if dx > deltax else deltax deltay = dy if dy > deltay else deltay deltax = np.int(np.ceil(deltax.value)) deltay = np.int(np.ceil(deltay.value)) # Create a new `smap` with the padding around it smap_data = np.pad(smap.data, ((deltay, deltay), (deltax, deltax)), 'constant', constant_values=0) smap_meta = deepcopy(smap.meta) smap_meta['naxis2'], smap_meta['naxis1'] = smap_data.shape smap_meta['crpix1'] += deltax smap_meta['crpix2'] += deltay smap = sunpy.map.Map(smap_data, smap_meta) warp_args = {'smap': smap, 'dt': dt} warp_args.update(diffrot_kwargs) # Apply solar differential rotation as a scikit-image warp out = transform.warp(to_norm(smap_data), inverse_map=_warp_sun_coordinates, map_args=warp_args) # Recover the original intensity range. out = un_norm(out, smap.data) # Update the meta information with the new date and time, and reference pixel. out_meta = deepcopy(smap.meta) if out_meta.get('date_obs', False): del out_meta['date_obs'] out_meta['date-obs'] = "{}".format(new_time.strftime('%Y-%m-%dT%H:%M:%S')) if submap: crval_rotated = solar_rotate_coordinate(smap.reference_coordinate, new_time, **diffrot_kwargs) out_meta['crval1'] = crval_rotated.Tx.value out_meta['crval2'] = crval_rotated.Ty.value return sunpy.map.Map((out, out_meta))
def differential_rotate(smap, observer=None, time=None, **diff_rot_kwargs): """ Function to transform a `~sunpy.map.Map` taking into account simultaneously both solar differential rotation and the changing location of the observer. The function transforms the input map data pixels by first rotating each pixel according to solar differential rotation. The amount of solar differential applied is calculated by the time difference between the observation time of map and the new observation time, as specified by either the "time" keyword or the "obstime" property of the "observer" keyword. The location of the rotated pixels are then transformed to locations on the Sun as seen from the new observer position. This is desirable since in most cases the observer does not remain at a fixed position in space. If the "time" keyword is used then the new observer position is assumed to be based on the location of the Earth. If the "observer" keyword is used then this defines the new observer position. The function works with full disk maps and maps that contain portions of the solar disk (maps that are entirely off-disk will raise an error). When the input map contains the full disk, the output map has the same dimensions as the input map. When the input map images only part of the solar disk, only the on-disk pixels are differentially rotated and the output map can have a different dimensions compared to the input map. In this case any off-disk emission shown in the input map is not included in the output map. Parameters ---------- smap : `~sunpy.map.GenericMap` Original map that we want to transform. observer : `~astropy.coordinates.BaseCoordinateFrame`, `~astropy.coordinates.SkyCoord`, `None`, optional The location of the new observer. Instruments in Earth orbit can be approximated by using the position of the Earth at the observation time of the new observer. time : sunpy-compatible time, `~astropy.time.TimeDelta`, `~astropy.units.Quantity`, `None`, optional Used to define the duration over which the amount of solar rotation is calculated. If 'time' is an `~astropy.time.Time` then the time interval is difference between 'time' and the map observation time. If 'time' is `~astropy.time.TimeDelta` or `~astropy.units.Quantity` then the calculation is "initial_obstime + time". Returns ------- `~sunpy.map.GenericMap` A map with the result of applying solar differential rotation to the input map. """ # If the entire map is off-disk, return an error so the user is aware. if is_all_off_disk(smap): raise ValueError( "The entire map is off disk. No data to differentially rotate.") # Get the new observer new_observer = _get_new_observer(smap.date, observer, time) # Only this function needs scikit image from skimage import transform from sunpy.image.util import to_norm, un_norm # Check whether the input contains the full disk of the Sun is_sub_full_disk = not contains_full_disk(smap) if is_sub_full_disk: # Find the minimal submap of the input map that includes all the # on disk pixels. This is required in order to calculate how # much to pad the output (solar-differentially rotated) data array by # compared to the input map. # The amount of padding is dependent on the amount of solar differential # rotation and where the on-disk pixels are (since these pixels are the only ones # subject to solar differential rotation). if not is_all_on_disk(smap): # Get the bottom left and top right coordinates that are the # vertices that define a box that encloses the on disk pixels bottom_left, top_right = on_disk_bounding_coordinates(smap) # Create a submap that excludes the off disk emission that does # not need to be rotated. smap = smap.submap(bottom_left, top_right) bottom_left = smap.bottom_left_coord top_right = smap.top_right_coord # Get the edges of the minimal submap that contains all the on-disk pixels. edges = map_edges(smap) # Calculate where the output array moves to. # Rotate the top and bottom edges rotated_top = _rotate_submap_edge(smap, edges[0], observer=new_observer, **diff_rot_kwargs) rotated_bottom = _rotate_submap_edge(smap, edges[1], observer=new_observer, **diff_rot_kwargs) # Rotate the left and right hand edges rotated_lhs = _rotate_submap_edge(smap, edges[2], observer=new_observer, **diff_rot_kwargs) rotated_rhs = _rotate_submap_edge(smap, edges[3], observer=new_observer, **diff_rot_kwargs) # Calculate the bounding box of the rotated map rotated_bl, rotated_tr = _get_bounding_coordinates( [rotated_top, rotated_bottom, rotated_lhs, rotated_rhs]) # Calculate the maximum distance in pixels the map has moved by comparing # how far the original and rotated bounding boxes have moved. diff_x = [(np.abs(rotated_bl.Tx - bottom_left.Tx)).value, (np.abs(rotated_tr.Tx - top_right.Tx)).value] deltax = int(np.ceil(np.max(diff_x) / smap.scale.axis1).value) diff_y = [(np.abs(rotated_bl.Ty - bottom_left.Ty)).value, (np.abs(rotated_tr.Ty - top_right.Ty)).value] deltay = int(np.ceil(np.max(diff_y) / smap.scale.axis2).value) # Create a new `smap` with the padding around it padded_data = np.pad(smap.data, ((deltay, deltay), (deltax, deltax)), 'constant', constant_values=0) padded_meta = deepcopy(smap.meta) padded_meta['naxis2'], padded_meta['naxis1'] = smap.data.shape padded_meta['crpix1'] += deltax padded_meta['crpix2'] += deltay # Create the padded map that will be used to create the rotated map. smap = smap._new_instance(padded_data, padded_meta) # Check for masked maps if smap.mask is not None: smap_data = np.ma.array(smap.data, mask=smap.mask) else: smap_data = smap.data # Create the arguments for the warp function. warp_args = {'smap': smap, 'new_observer': new_observer} warp_args.update(diff_rot_kwargs) # Apply solar differential rotation as a scikit-image warp out_data = transform.warp(to_norm(smap_data), inverse_map=_warp_sun_coordinates, map_args=warp_args) # Recover the original intensity range. out_data = un_norm(out_data, smap.data) # Update the meta information with the new date and time. out_meta = deepcopy(smap.meta) if out_meta.get('date_obs', False): del out_meta['date_obs'] out_meta['date-obs'] = new_observer.obstime.strftime( "%Y-%m-%dT%H:%M:%S.%f") # Need to update the observer location for the output map. # Remove all the possible observer keys all_keys = expand_list( [e[0] for e in smap._supported_observer_coordinates]) for key in all_keys: out_meta.pop(key) # Add a new HGS observer out_meta['hglt_obs'] = new_observer.lat.value out_meta['hgln_obs'] = new_observer.lon.value out_meta['dsun_obs'] = new_observer.radius.to(u.m).value if is_sub_full_disk: # Define a new reference pixel and the value at the reference pixel. # Note that according to the FITS convention the first pixel in the # image is at (1.0, 1.0). center_rotated = solar_rotate_coordinate(smap.center, observer=new_observer, **diff_rot_kwargs) out_meta['crval1'] = center_rotated.Tx.value out_meta['crval2'] = center_rotated.Ty.value out_meta['crpix1'] = 1 + smap.data.shape[1] / 2.0 + ( (center_rotated.Tx - smap.center.Tx) / smap.scale.axis1).value out_meta['crpix2'] = 1 + smap.data.shape[0] / 2.0 + ( (center_rotated.Ty - smap.center.Ty) / smap.scale.axis2).value return smap._new_instance(out_data, out_meta).submap(rotated_bl, rotated_tr) else: return smap._new_instance(out_data, out_meta)