def apparent_longitude(t=None): """Returns the apparent longitude of the Sun.""" T = util.julian_centuries(t) omega = 259.18 - 1934.142 * T true_long = true_longitude(t) result = true_long - 0.00569 - 0.00479 * math.sin(np.radians(omega)) return result
def mean_anomaly(t=None): """Returns the mean anomaly (the angle through which the Sun has moved assuming a circular orbit) as a function of time.""" T = util.julian_centuries(t) result = 358.475830 + 35999.049750 * T - 0.0001500 * T ** 2 - 0.00000330 * T ** 3 result = result % 360.0 return result
def equation_of_center(t=None): """Returns the Sun's equation of center (in degrees)""" T = util.julian_centuries(t) mna = mean_anomaly(t) result = ((1.9194600 - 0.0047890 * T - 0.0000140 * T ** 2) * np.sin(np.radians(mna) + (0.0200940 - 0.0001000 * T) * np.sin(np.radians(2 * mna)) + 0.0002930 * np.sin(np.radians(3 * mna)))) return result
def solar_north(t=None): """Returns the position of the Solar north pole in degrees.""" T = util.julian_centuries(t) ob1 = true_obliquity_of_ecliptic(t) # in degrees i = 7.25 k = 74.3646 + 1.395833 * T lamda = true_longitude(t) - 0.00569 omega = apparent_longitude(t) lamda2 = lamda - 0.00479 * math.sin(np.radians(omega)) diff = np.radians(lamda - k) x = np.degrees(math.atan(-math.cos(np.radians(lamda2) * math.tan(np.radians(ob1))))) y = np.degrees(math.atan(-math.cos(diff) * math.tan(np.radians(i)))) result = x + y return result
def heliographic_solar_center(t=None): """Returns the position of the solar center in heliographic coordinates.""" jd = util.julian_day(t) T = util.julian_centuries(t) # Heliographic coordinates in degrees theta = (jd - 2398220) * 360 / 25.38 i = 7.25 k = 74.3646 + 1.395833 * T lamda = true_longitude(t) - 0.00569 omega = apparent_longitude(t) lamda2 = lamda - 0.00479 * math.sin(np.radians(omega)) diff = np.radians(lamda - k) # Latitude at center of disk (deg): he_lat = np.degrees(math.asin(math.sin(diff) * math.sin(np.radians(i)))) # Longitude at center of disk (deg): y = -math.sin(diff) * math.cos(np.radians(i)) x = -math.cos(diff) rpol = cmath.polar(complex(x, y)) he_lon = np.degrees(rpol[1]) - theta he_lon = he_lon % 360 if he_lon < 0: he_lon = he_lon + 360.0 return [he_lon, he_lat]
def mean_ecliptic_longitude(t=None): """Returns the mean ecliptic longitude.""" T = util.julian_centuries(t) result = 279.696680 + 36000.76892 * T + 0.0003025 * T ** 2 result = result % 360.0 return result
def eccentricity_SunEarth_orbit(t=None): """Returns the eccentricity of the Sun Earth Orbit.""" T = util.julian_centuries(t) result = 0.016751040 - 0.00004180 * T - 0.0000001260 * T ** 2 return result
def true_obliquity_of_ecliptic(t=None): T = util.julian_centuries(t) result = 23.452294 - 0.0130125 * T - 0.00000164 * T ** 2 + 0.000000503 * T ** 3 return result
def geometric_mean_longitude(t=None): """Returns the geometric mean longitude (in degrees)""" T = util.julian_centuries(t) result = 279.696680 + 36000.76892 * T + 0.0003025 * T ** 2 result = result % 360.0 return result