def test_cascade_delete_table(app_context: None, session: Session) -> None: """ Test that deleting ``Table`` also deletes its columns. """ from superset.columns.models import Column from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Table.metadata.create_all(engine) # pylint: disable=no-member table = Table( name="my_table", schema="my_schema", catalog="my_catalog", database=Database(database_name="my_database", sqlalchemy_uri="sqlite://"), columns=[ Column(name="longitude", expression="longitude"), Column(name="latitude", expression="latitude"), ], ) session.add(table) session.flush() columns = session.query(Column).all() assert len(columns) == 2 session.delete(table) session.flush() # test that columns were deleted columns = session.query(Column).all() assert len(columns) == 0
def test_dataset_model(app_context: None, session: Session) -> None: """ Test basic attributes of a ``Dataset``. """ from superset.columns.models import Column from superset.datasets.models import Dataset from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Dataset.metadata.create_all(engine) # pylint: disable=no-member table = Table( name="my_table", schema="my_schema", catalog="my_catalog", database=Database(database_name="my_database", sqlalchemy_uri="sqlite://"), columns=[ Column(name="longitude", expression="longitude"), Column(name="latitude", expression="latitude"), ], ) session.add(table) session.flush() dataset = Dataset( database=table.database, name="positions", expression=""" SELECT array_agg(array[longitude,latitude]) AS position FROM my_catalog.my_schema.my_table """, tables=[table], columns=[ Column( name="position", expression="array_agg(array[longitude,latitude])", ), ], ) session.add(dataset) session.flush() assert dataset.id == 1 assert dataset.uuid is not None assert dataset.name == "positions" assert ( dataset.expression == """ SELECT array_agg(array[longitude,latitude]) AS position FROM my_catalog.my_schema.my_table """ ) assert [table.name for table in dataset.tables] == ["my_table"] assert [column.name for column in dataset.columns] == ["position"]
def test_cascade_delete_dataset(app_context: None, session: Session) -> None: """ Test that deleting ``Dataset`` also deletes its columns. """ from superset.columns.models import Column from superset.datasets.models import Dataset from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Dataset.metadata.create_all(engine) # pylint: disable=no-member table = Table( name="my_table", schema="my_schema", catalog="my_catalog", database=Database(database_name="my_database", sqlalchemy_uri="sqlite://"), columns=[ Column(name="longitude", expression="longitude"), Column(name="latitude", expression="latitude"), ], ) session.add(table) session.flush() dataset = Dataset( name="positions", expression=""" SELECT array_agg(array[longitude,latitude]) AS position FROM my_catalog.my_schema.my_table """, database=table.database, tables=[table], columns=[ Column( name="position", expression="array_agg(array[longitude,latitude])", ), ], ) session.add(dataset) session.flush() columns = session.query(Column).all() assert len(columns) == 3 session.delete(dataset) session.flush() # test that dataset columns were deleted (but not table columns) columns = session.query(Column).all() assert len(columns) == 2
def test_column_model(app_context: None, session: Session) -> None: """ Test basic attributes of a ``Column``. """ from superset.columns.models import Column engine = session.get_bind() Column.metadata.create_all(engine) # pylint: disable=no-member column = Column( name="ds", type="TIMESTAMP", expression="ds", ) session.add(column) session.flush() assert column.id == 1 assert column.uuid is not None assert column.name == "ds" assert column.type == "TIMESTAMP" assert column.expression == "ds" # test that default values are set correctly assert column.description is None assert column.warning_text is None assert column.unit is None assert column.is_temporal is False assert column.is_spatial is False assert column.is_partition is False assert column.is_aggregation is False assert column.is_additive is False assert column.is_increase_desired is True
def test_table_model(session: Session) -> None: """ Test basic attributes of a ``Table``. """ from superset.columns.models import Column from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Table.metadata.create_all(engine) # pylint: disable=no-member table = Table( name="my_table", schema="my_schema", catalog="my_catalog", database=Database(database_name="my_database", sqlalchemy_uri="test://"), columns=[ Column( name="ds", type="TIMESTAMP", expression="ds", ) ], ) session.add(table) session.flush() assert table.id == 1 assert table.uuid is not None assert table.database_id == 1 assert table.catalog == "my_catalog" assert table.schema == "my_schema" assert table.name == "my_table" assert [column.name for column in table.columns] == ["ds"]
def update_or_create_column(column_meta: Dict[str, Any]) -> Column: column_name: str = column_meta["name"] if column_name in existing_columns: column = existing_columns[column_name] else: column = Column(name=column_name) column.type = column_meta["type"] column.is_temporal = column_meta["is_dttm"] column.expression = quote_identifier(column_name) column.is_aggregation = False column.is_physical = True column.is_spatial = False column.is_partition = False # TODO: update with accurate is_partition return column
def session_with_data(session: Session) -> Iterator[Session]: from superset.columns.models import Column from superset.connectors.sqla.models import SqlaTable, TableColumn from superset.datasets.models import Dataset from superset.models.core import Database from superset.models.sql_lab import Query, SavedQuery from superset.tables.models import Table engine = session.get_bind() SqlaTable.metadata.create_all(engine) # pylint: disable=no-member db = Database(database_name="my_database", sqlalchemy_uri="sqlite://") columns = [ TableColumn(column_name="a", type="INTEGER"), ] sqla_table = SqlaTable( table_name="my_sqla_table", columns=columns, metrics=[], database=db, ) query_obj = Query( client_id="foo", database=db, tab_name="test_tab", sql_editor_id="test_editor_id", sql="select * from bar", select_sql="select * from bar", executed_sql="select * from bar", limit=100, select_as_cta=False, rows=100, error_message="none", results_key="abc", ) saved_query = SavedQuery(database=db, sql="select * from foo") table = Table( name="my_table", schema="my_schema", catalog="my_catalog", database=db, columns=[], ) dataset = Dataset( database=table.database, name="positions", expression=""" SELECT array_agg(array[longitude,latitude]) AS position FROM my_catalog.my_schema.my_table """, tables=[table], columns=[ Column( name="position", expression="array_agg(array[longitude,latitude])", ), ], ) session.add(dataset) session.add(table) session.add(saved_query) session.add(query_obj) session.add(db) session.add(sqla_table) session.flush() yield session
def test_create_virtual_sqlatable(mocker: MockFixture, app_context: None, session: Session) -> None: """ Test shadow write when creating a new ``SqlaTable``. When a new virtual ``SqlaTable`` is created, new models should also be created for ``Dataset`` and ``Column``. """ # patch session mocker.patch("superset.security.SupersetSecurityManager.get_session", return_value=session) from superset.columns.models import Column from superset.columns.schemas import ColumnSchema from superset.connectors.sqla.models import SqlaTable, SqlMetric, TableColumn from superset.datasets.models import Dataset from superset.datasets.schemas import DatasetSchema from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Dataset.metadata.create_all(engine) # pylint: disable=no-member # create the ``Table`` that the virtual dataset points to database = Database(database_name="my_database", sqlalchemy_uri="sqlite://") table = Table( name="some_table", schema="my_schema", catalog=None, database=database, columns=[ Column(name="ds", is_temporal=True, type="TIMESTAMP"), Column(name="user_id", type="INTEGER"), Column(name="revenue", type="INTEGER"), Column(name="expenses", type="INTEGER"), ], ) session.add(table) session.commit() # create virtual dataset columns = [ TableColumn(column_name="ds", is_dttm=1, type="TIMESTAMP"), TableColumn(column_name="user_id", type="INTEGER"), TableColumn(column_name="revenue", type="INTEGER"), TableColumn(column_name="expenses", type="INTEGER"), TableColumn(column_name="profit", type="INTEGER", expression="revenue-expenses"), ] metrics = [ SqlMetric(metric_name="cnt", expression="COUNT(*)"), ] sqla_table = SqlaTable( table_name="old_dataset", columns=columns, metrics=metrics, main_dttm_col="ds", default_endpoint= "https://www.youtube.com/watch?v=dQw4w9WgXcQ", # not used database=database, offset=-8, description="This is the description", is_featured=1, cache_timeout=3600, schema="my_schema", sql=""" SELECT ds, user_id, revenue, expenses, revenue - expenses AS profit FROM some_table""", params=json.dumps({ "remote_id": 64, "database_name": "examples", "import_time": 1606677834, }), perm=None, filter_select_enabled=1, fetch_values_predicate="foo IN (1, 2)", is_sqllab_view=0, # no longer used? template_params=json.dumps({"answer": "42"}), schema_perm=None, extra=json.dumps({"warning_markdown": "*WARNING*"}), ) session.add(sqla_table) session.flush() # ignore these keys when comparing results ignored_keys = {"created_on", "changed_on", "uuid"} # check that columns were created column_schema = ColumnSchema() column_schemas = [{ k: v for k, v in column_schema.dump(column).items() if k not in ignored_keys } for column in session.query(Column).all()] assert column_schemas == [ { "type": "TIMESTAMP", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": None, "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "ds", "is_physical": True, "changed_by": None, "is_temporal": True, "id": 1, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": None, "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "user_id", "is_physical": True, "changed_by": None, "is_temporal": False, "id": 2, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": None, "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "revenue", "is_physical": True, "changed_by": None, "is_temporal": False, "id": 3, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": None, "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "expenses", "is_physical": True, "changed_by": None, "is_temporal": False, "id": 4, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "TIMESTAMP", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": "ds", "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "ds", "is_physical": False, "changed_by": None, "is_temporal": True, "id": 5, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": "user_id", "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "user_id", "is_physical": False, "changed_by": None, "is_temporal": False, "id": 6, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": "revenue", "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "revenue", "is_physical": False, "changed_by": None, "is_temporal": False, "id": 7, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": "expenses", "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "expenses", "is_physical": False, "changed_by": None, "is_temporal": False, "id": 8, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "INTEGER", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": "revenue-expenses", "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "profit", "is_physical": False, "changed_by": None, "is_temporal": False, "id": 9, "is_aggregation": False, "external_url": None, "is_managed_externally": False, }, { "type": "Unknown", "is_additive": False, "extra_json": "{}", "is_partition": False, "expression": "COUNT(*)", "unit": None, "warning_text": None, "created_by": None, "is_increase_desired": True, "description": None, "is_spatial": False, "name": "cnt", "is_physical": False, "changed_by": None, "is_temporal": False, "id": 10, "is_aggregation": True, "external_url": None, "is_managed_externally": False, }, ] # check that dataset was created, and has a reference to the table dataset_schema = DatasetSchema() datasets = [{ k: v for k, v in dataset_schema.dump(dataset).items() if k not in ignored_keys } for dataset in session.query(Dataset).all()] assert datasets == [{ "id": 1, "sqlatable_id": 1, "name": "old_dataset", "changed_by": None, "created_by": None, "columns": [5, 6, 7, 8, 9, 10], "is_physical": False, "tables": [1], "extra_json": "{}", "external_url": None, "is_managed_externally": False, "expression": """ SELECT ds, user_id, revenue, expenses, revenue - expenses AS profit FROM some_table""", }]
def test_update_virtual_sqlatable_references(mocker: MockFixture, app_context: None, session: Session) -> None: """ Test that changing the SQL of a virtual ``SqlaTable`` updates ``Dataset``. When the SQL is modified the list of referenced tables should be updated in the new ``Dataset`` model. """ # patch session mocker.patch("superset.security.SupersetSecurityManager.get_session", return_value=session) from superset.columns.models import Column from superset.connectors.sqla.models import SqlaTable, TableColumn from superset.datasets.models import Dataset from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Dataset.metadata.create_all(engine) # pylint: disable=no-member database = Database(database_name="my_database", sqlalchemy_uri="sqlite://") table1 = Table( name="table_a", schema="my_schema", catalog=None, database=database, columns=[Column(name="a", type="INTEGER")], ) table2 = Table( name="table_b", schema="my_schema", catalog=None, database=database, columns=[Column(name="b", type="INTEGER")], ) session.add(table1) session.add(table2) session.commit() # create virtual dataset columns = [TableColumn(column_name="a", type="INTEGER")] sqla_table = SqlaTable( table_name="old_dataset", columns=columns, database=database, schema="my_schema", sql="SELECT a FROM table_a", ) session.add(sqla_table) session.flush() # check that new dataset has table1 dataset = session.query(Dataset).one() assert dataset.tables == [table1] # change SQL sqla_table.sql = "SELECT a, b FROM table_a JOIN table_b" session.flush() # check that new dataset has both tables dataset = session.query(Dataset).one() assert dataset.tables == [table1, table2] assert dataset.expression == "SELECT a, b FROM table_a JOIN table_b"
def test_create_virtual_sqlatable( app_context: None, mocker: MockFixture, session: Session, sample_columns: Dict["TableColumn", Dict[str, Any]], sample_metrics: Dict["SqlMetric", Dict[str, Any]], columns_default: Dict[str, Any], ) -> None: """ Test shadow write when creating a new ``SqlaTable``. When a new virtual ``SqlaTable`` is created, new models should also be created for ``Dataset`` and ``Column``. """ # patch session mocker.patch( "superset.security.SupersetSecurityManager.get_session", return_value=session ) from superset.columns.models import Column from superset.columns.schemas import ColumnSchema from superset.connectors.sqla.models import SqlaTable from superset.datasets.models import Dataset from superset.datasets.schemas import DatasetSchema from superset.models.core import Database from superset.tables.models import Table engine = session.get_bind() Dataset.metadata.create_all(engine) # pylint: disable=no-member user1 = get_test_user(1, "abc") physical_table_columns: List[Dict[str, Any]] = [ dict( name="ds", is_temporal=True, type="TIMESTAMP", expression="ds", is_physical=True, ), dict(name="num_boys", type="INTEGER", expression="num_boys", is_physical=True), dict(name="revenue", type="INTEGER", expression="revenue", is_physical=True), dict(name="expenses", type="INTEGER", expression="expenses", is_physical=True), ] # create a physical ``Table`` that the virtual dataset points to database = Database(database_name="my_database", sqlalchemy_uri="sqlite://") table = Table( name="some_table", schema="my_schema", catalog=None, database=database, columns=[ Column(**props, created_by=user1, changed_by=user1) for props in physical_table_columns ], ) session.add(table) session.commit() assert session.query(Table).count() == 1 assert session.query(Dataset).count() == 0 # create virtual dataset columns = list(sample_columns.keys()) metrics = list(sample_metrics.keys()) expected_table_columns = list(sample_columns.values()) expected_metric_columns = list(sample_metrics.values()) sqla_table = SqlaTable( created_by=user1, changed_by=user1, owners=[user1], table_name="old_dataset", columns=columns, metrics=metrics, main_dttm_col="ds", default_endpoint="https://www.youtube.com/watch?v=dQw4w9WgXcQ", # not used database=database, offset=-8, description="This is the description", is_featured=1, cache_timeout=3600, schema="my_schema", sql=""" SELECT ds, num_boys, revenue, expenses, revenue - expenses AS profit FROM some_table""", params=json.dumps( { "remote_id": 64, "database_name": "examples", "import_time": 1606677834, } ), perm=None, filter_select_enabled=1, fetch_values_predicate="foo IN (1, 2)", is_sqllab_view=0, # no longer used? template_params=json.dumps({"answer": "42"}), schema_perm=None, extra=json.dumps({"warning_markdown": "*WARNING*"}), ) session.add(sqla_table) session.flush() # should not add a new table assert session.query(Table).count() == 1 assert session.query(Dataset).count() == 1 # ignore these keys when comparing results ignored_keys = {"created_on", "changed_on"} column_schema = ColumnSchema() actual_columns = [ {k: v for k, v in column_schema.dump(column).items() if k not in ignored_keys} for column in session.query(Column).all() ] num_physical_columns = len(physical_table_columns) num_dataset_table_columns = len(columns) num_dataset_metric_columns = len(metrics) assert ( len(actual_columns) == num_physical_columns + num_dataset_table_columns + num_dataset_metric_columns ) for i, column in enumerate(table.columns): assert actual_columns[i] == { **columns_default, **physical_table_columns[i], "id": i + 1, "uuid": str(column.uuid), "tables": [1], } offset = num_physical_columns for i, column in enumerate(sqla_table.columns): assert actual_columns[i + offset] == { **columns_default, **expected_table_columns[i], "id": i + offset + 1, "uuid": str(column.uuid), "is_physical": False, "datasets": [1], } offset = num_physical_columns + num_dataset_table_columns for i, metric in enumerate(sqla_table.metrics): assert actual_columns[i + offset] == { **columns_default, **expected_metric_columns[i], "id": i + offset + 1, "uuid": str(metric.uuid), "datasets": [1], } # check that dataset was created, and has a reference to the table dataset_schema = DatasetSchema() datasets = [ {k: v for k, v in dataset_schema.dump(dataset).items() if k not in ignored_keys} for dataset in session.query(Dataset).all() ] assert len(datasets) == 1 assert datasets[0] == { "id": 1, "database": 1, "uuid": str(sqla_table.uuid), "name": "old_dataset", "changed_by": 1, "created_by": 1, "owners": [1], "columns": [5, 6, 7, 8, 9, 10], "is_physical": False, "tables": [1], "extra_json": "{}", "external_url": None, "is_managed_externally": False, "expression": """ SELECT ds, num_boys, revenue, expenses, revenue - expenses AS profit FROM some_table""", }