Exemple #1
0
def get_ann(img_path, inst_path):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)
    instance_img = sly.image.read(inst_path)
    img_gray = cv2.cvtColor(instance_img, cv2.COLOR_BGR2GRAY)
    _, mask_foreground = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
    mask_background = (img_gray == 0)
    class_name = 'background'
    color = [1, 1, 1]
    bitmap = sly.Bitmap(data=mask_background)
    if not classes_dict.has_key(class_name):
        obj_class = sly.ObjClass(name=class_name,
                                 geometry_type=sly.Bitmap,
                                 color=color)
        classes_dict = classes_dict.add(obj_class)
    ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
    mask_foreground = mask_foreground.astype(np.bool)
    if np.any(mask_foreground):
        class_name = 'object'
        color = [255, 255, 255]
        bitmap = sly.Bitmap(data=mask_foreground)
        if not classes_dict.has_key(class_name):
            obj_class = sly.ObjClass(name=class_name,
                                     geometry_type=sly.Bitmap,
                                     color=color)
            classes_dict = classes_dict.add(obj_class)
        ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
        return ann
def process_meta(input_meta):
    output_meta = sly.ProjectMeta(obj_classes=None, img_tag_metas=input_meta.img_tag_metas, objtag_metas=input_meta.obj_tags)
    for obj_class in input_meta.obj_classes:
        if obj_class.name in classes_mapping.keys() or obj_class.name in classes_mapping.values():
            output_meta = output_meta.add_obj_class(obj_class)

    for gt_class in classes_mapping:
        output_meta = output_meta.add_obj_class(sly.ObjClass(make_false_positive_name(gt_class), sly.Bitmap))
        output_meta = output_meta.add_obj_class(sly.ObjClass(make_false_negative_name(gt_class), sly.Bitmap))
        output_meta = output_meta.add_img_tag_meta(sly.TagMeta(make_iou_tag_name(gt_class), sly.TagValueType.ANY_NUMBER))
    return output_meta
def set_project_meta(api, project_id, state):
    fg_class = sly.ObjClass(state[const.FG_NAME],
                            GET_GEOMETRY_FROM_STR(state[const.FG_SHAPE]),
                            color=sly.color.hex2rgb(state[const.FG_COLOR]))
    st_class = sly.ObjClass(state[const.ST_NAME],
                            GET_GEOMETRY_FROM_STR(state[const.ST_SHAPE]),
                            color=sly.color.hex2rgb(state[const.ST_COLOR]))
    meta = sly.ProjectMeta(
        obj_classes=sly.ObjClassCollection([fg_class, st_class]))
    api.project.update_meta(
        project_id,
        sly.ProjectMeta().to_json())  # clear previous labels and classes
    api.project.update_meta(project_id, meta.to_json())
    return fg_class, st_class
Exemple #4
0
def test_from_supervisely():
    import supervisely_lib as sly

    data_path = "./data/test_supervisely/from_to"
    if os.path.exists(data_path):
        shutil.rmtree(data_path)
    project_name = "pixel_project"
    project_path = os.path.join(data_path, project_name)
    project = sly.Project(project_path, sly.OpenMode.CREATE)
    init_meta = project.meta
    project.meta._project_type = "images"
    project_ds = project.create_dataset(project_name)
    img = np.ones((30, 30, 3))
    project_ds.add_item_np("pixel.jpeg", img)
    item_path, item_ann_path = project_ds.get_item_paths("pixel.jpeg")
    ann = sly.Annotation.load_json_file(item_ann_path, project.meta)
    bbox_class = sly.ObjClass(name="_bbox", geometry_type=sly.Rectangle)
    meta_with_bboxes = project.meta.add_obj_classes([bbox_class])
    bbox_label = sly.Label(
        geometry=sly.Rectangle(0, 0, 10, 10),
        obj_class=meta_with_bboxes.obj_classes.get("_bbox"),
    )
    ann_with_bboxes = ann.add_labels([bbox_label])
    project_ds.set_ann("pixel.jpeg", ann_with_bboxes)
    project.set_meta(meta_with_bboxes)

    trans = hub.Dataset.from_supervisely(project)
    dataset = trans.store(os.path.join(data_path, "pixel_dataset_bbox"))
    project_back = dataset.to_supervisely(
        os.path.join(data_path, "pixel_project_bbox_back"))
    project.set_meta(init_meta)
    poly_class = sly.ObjClass(name="_poly", geometry_type=sly.Polygon)
    meta_with_poly = project.meta.add_obj_classes([poly_class])
    points = [[0, 0], [0, 10], [10, 0], [10, 10]]
    point_loc_points = [
        sly.geometry.point_location.PointLocation(*point) for point in points
    ]
    poly_label = sly.Label(
        geometry=sly.Polygon(exterior=point_loc_points, interior=[]),
        obj_class=meta_with_poly.obj_classes.get("_poly"),
    )
    ann_with_polys = ann.add_labels([poly_label])
    project_ds.set_ann("pixel.jpeg", ann_with_polys)
    project.set_meta(meta_with_poly)
    trans = hub.Dataset.from_supervisely(project)
    dataset = trans.store(os.path.join(data_path, "pixel_dataset_poly"))
    project_back = dataset.to_supervisely(
        os.path.join(data_path, "pixel_project_poly_back"))
Exemple #5
0
    def _generate_annotation(self, src_img_path, inst_path):
        ann = sly.Annotation.from_img_path(src_img_path)

        if os.path.isfile(inst_path):
            instance_img = self._read_img_unchanged(inst_path)
            col2coord = get_col2coord(instance_img)
            curr_col2cls = {
                col: self.cls_names[int(
                    col //
                    256)]  # some dirty hack to determine class correctly
                for col, coord in col2coord.items()
            }

            for color, class_name in curr_col2cls.items():
                mask = instance_img == color  # exact match for 1d uint16
                bitmap = sly.Bitmap(data=mask)
                obj_class = sly.ObjClass(name=class_name,
                                         geometry_type=sly.Bitmap,
                                         color=self.cls2col.get(
                                             class_name,
                                             sly.color.random_rgb()))

                if not self.obj_classes.has_key(class_name):
                    self.obj_classes = self.obj_classes.add(obj_class)

                ann = ann.add_label(sly.Label(bitmap, obj_class))
                instance_img[mask] = 0  # to check missing colors, see below

            if np.sum(instance_img) > 0:
                sly.logger.warn(
                    'Not all objects or classes are captured from source segmentation.',
                    extra={})
        return ann
Exemple #6
0
def get_ann(img_path, inst_path):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)
    class_name = 'text'
    color = [255, 0, 255]
    if inst_path is not None:
        with open(inst_path, "r") as file:
            all_lines = file.readlines()
            for line in all_lines:
                line = line.strip('\n').split(',')[:9]
                text = line[8]
                if text == '###':
                    text = ''
                line = line[:8]
                try:
                    line = list(map(lambda i: int(i), line))
                except ValueError:
                    line[0] = line[0][1:]
                    line = list(map(lambda i: int(i), line))
                points = [
                    sly.PointLocation(line[i + 1], line[i])
                    for i in range(0, 8, 2)
                ]
                polygon = sly.Polygon(exterior=points, interior=[])

                if not classes_dict.has_key(class_name):
                    obj_class = sly.ObjClass(name=class_name,
                                             geometry_type=sly.Polygon,
                                             color=color)
                    classes_dict = classes_dict.add(
                        obj_class)  # make it for meta.json
                ann = ann.add_label(
                    sly.Label(polygon, classes_dict.get(class_name), None,
                              text))
    return ann
Exemple #7
0
def get_ann(img_path, inst_path, default_classes_colors, default_colors_classes):
    global classes_dict
    global count_of_colors
    ann = sly.Annotation.from_img_path(img_path)
    curr_color_to_class = {}
    if inst_path is not None:
        instance_img = sly.image.read(inst_path)
        instance_img[np.where((instance_img == [0, 0, 0]).all(axis=2))] = [1, 1, 1]
        colored_img = instance_img * 10
        instance_img = instance_img * 10
        unique_colors = np.unique(instance_img.reshape(-1, instance_img.shape[2]), axis=0)
        ann_colors = np.array(unique_colors).tolist()
        for color in ann_colors:
            if not color in default_classes_colors.values():
                default_classes_colors['object{}'.format(count_of_colors)] = color
                default_colors_classes[tuple(color)] = 'object{}'.format(count_of_colors)
                curr_color_to_class[tuple(color)] = 'object{}'.format(count_of_colors)
                count_of_colors += 1
            else:
                curr_color_to_class[tuple(color)] = default_colors_classes[tuple(color)]

    for color, class_name in curr_color_to_class.items():
        mask = np.all(colored_img == color, axis=2)
        bitmap = sly.Bitmap(data=mask)
        if not classes_dict.has_key(class_name):
            obj_class = sly.ObjClass(name=class_name, geometry_type=sly.Bitmap, color=list(color))
            classes_dict = classes_dict.add(obj_class)  # make it for meta.json

        ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
    return ann
Exemple #8
0
def get_ann(img_path, inst_path, default_classes_colors):
    global classes_dict
    instance_img = sly.image.read(inst_path)
    colored_img = instance_img
    ann = sly.Annotation.from_img_path(img_path)
    unique_colors = np.unique(instance_img.reshape(-1, instance_img.shape[2]),
                              axis=0)
    for color in unique_colors:
        mask = np.all(colored_img == color, axis=2)
        class_name = default_classes_colors[tuple(color)]
        mask = mask.astype(np.uint8) * 128
        im2, contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL,
                                                    cv2.CHAIN_APPROX_SIMPLE)
        for i in range(len(contours)):
            arr = np.array(contours[i], dtype=int)
            mask_temp = np.zeros(mask.shape, dtype=np.uint8)
            cv2.fillPoly(mask_temp, [arr], (254, 254, 254))
            mask = mask_temp.astype(np.bool)
            bitmap = sly.Bitmap(data=mask)
            if not classes_dict.has_key(class_name):
                obj_class = sly.ObjClass(name=class_name,
                                         geometry_type=sly.Bitmap,
                                         color=list(color))
                classes_dict = classes_dict.add(obj_class)
            ann = ann.add_label(sly.Label(bitmap,
                                          classes_dict.get(class_name)))
    return ann
Exemple #9
0
def get_ann(img_path, inst_path, number_class, pixel_color):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)

    if inst_path is not None:
        instance_img = sly.image.read(inst_path)
        instance_img = instance_img[:, :, 0] + 1
        current_color2class = {}
        temp = np.unique(instance_img)
        for pixel in temp:
            current_color2class[pixel] = number_class[pixel]

        for pixel, class_name in current_color2class.items():
            new_color = pixel_color[pixel]
            imgray = np.where(instance_img == pixel, instance_img, 0)
            ret, thresh = cv2.threshold(imgray, 1, 255, 0)
            im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            for i in range(len(contours)):
                arr = np.array(contours[i], dtype=int)
                mask_temp = np.zeros(instance_img.shape, dtype=np.uint8)

                cv2.fillPoly(mask_temp, [np.int32(arr)], (255, 255, 255))
                mask = mask_temp.astype(np.bool)
                bitmap = sly.Bitmap(data=mask)

                if not classes_dict.has_key(class_name):
                    obj_class = sly.ObjClass(name=class_name, geometry_type=sly.Bitmap, color=new_color)
                    classes_dict = classes_dict.add(obj_class)  # make it for meta.json

                ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
    return ann
Exemple #10
0
def get_ann(img_path, inst_path, number_class, pixel_color):
    global classes_dict
    instance_img = []
    with open(inst_path) as file:
        for line in file:
            line = line.split('\n')[0]
            line = line.split(' ')
            instance_img.append(line)
    instance_img = np.array(instance_img, np.uint8)
    instance_img = instance_img + 2
    curr_color_to_class = {}
    temp = np.unique(instance_img)
    for pixel in temp:
        if pixel == 255:
            continue
        curr_color_to_class[pixel] = number_class[pixel]

    ann = sly.Annotation.from_img_path(img_path)

    for color, class_name in curr_color_to_class.items():
        new_color = list(pixel_color[color])
        mask = np.where(instance_img == color, instance_img, 0)
        im2, contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        for i in range(len(contours)):
            arr = np.array(contours[i], dtype=int)
            mask_temp = np.zeros(instance_img.shape, dtype=np.uint8)
            cv2.fillPoly(mask_temp, [np.int32(arr)], (254, 254, 254))
            mask = mask_temp.astype(np.bool)
            bitmap = sly.Bitmap(data=mask)

            if not classes_dict.has_key(class_name):
                obj_class = sly.ObjClass(name=class_name, geometry_type=sly.Bitmap, color=new_color)
                classes_dict = classes_dict.add(obj_class)
            ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
    return ann
Exemple #11
0
def get_ann(img_path, inst_path, number_class, pixel_color):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)

    if inst_path is not None:
        mat = scipy.io.loadmat(inst_path)
        instance_img = mat['LabelMap']
        colored_img = cv2.merge((instance_img, instance_img, instance_img))
        current_color_to_class = {}
        temp = np.unique(instance_img)
        for pixel in temp:
            current_color_to_class[pixel] = number_class[str(pixel)]

        for pixel, class_name in current_color_to_class.items():
            mask = np.all(colored_img == pixel, axis=2)  # exact match (3-channel img & rgb color)
            new_color = pixel_color[str(pixel)]
            bitmap = sly.Bitmap(data=mask)

            if not classes_dict.has_key(class_name):
                obj_class = sly.ObjClass(name=class_name, geometry_type=sly.Bitmap, color=new_color)
                classes_dict = classes_dict.add(obj_class) # make it for meta.json

            ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
            #  clear used pixels in mask to check missing colors, see below
            colored_img[mask] = (0, 0, 0)

        if np.sum(colored_img) > 0:
            sly.logger.warn('Not all objects or classes are captured from source segmentation.')

    return ann
Exemple #12
0
def get_ann(img_path, inst_path, number_class, pixel_color):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)
    mat = scipy.io.loadmat(inst_path)
    instance_img = mat['MM'][0][0][0]
    instance_img = instance_img.astype(np.uint8) + 1
    colored_img = instance_img
    unique_pixels = np.unique(instance_img)
    for pixel in unique_pixels:
        color = pixel_color[pixel]
        class_name = number_class[pixel]
        imgray = np.where(colored_img == pixel, colored_img, 0)
        ret, thresh = cv2.threshold(imgray, 1, 255, 0)
        im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL,
                                                    cv2.CHAIN_APPROX_SIMPLE)
        for i in range(len(contours)):
            arr = np.array(contours[i], dtype=int)
            mask_temp = np.zeros(instance_img.shape, dtype=np.uint8)
            cv2.fillPoly(mask_temp, [arr], (255, 255, 255))
            mask = mask_temp.astype(np.bool)
            bitmap = sly.Bitmap(data=mask)
            if not classes_dict.has_key(class_name):
                obj_class = sly.ObjClass(name=class_name,
                                         geometry_type=sly.Bitmap,
                                         color=list(color))
                classes_dict = classes_dict.add(obj_class)
            ann = ann.add_label(sly.Label(bitmap,
                                          classes_dict.get(class_name)))
    return ann
Exemple #13
0
def create_obj_class_collection(
        classes_mapping: Dict) -> sly.ObjClassCollection:
    cls_list = [
        sly.ObjClass(cls_name, sly.Bitmap)
        for cls_name in classes_mapping.keys()
    ]
    return sly.ObjClassCollection(cls_list)
Exemple #14
0
    def _get_ann(self, img_path, segm_path, inst_path):

        segmentation_img = sly.image.read(segm_path)

        if inst_path is not None:
            instance_img = sly.image.read(inst_path)
            colored_img = instance_img
            instance_img16 = instance_img.astype(np.uint16)
            col2coord = get_col2coord(instance_img16)
            curr_col2cls = ((col, self.color2class_name.get(tuple(segmentation_img[coord])))
                            for col, coord in col2coord.items())
            curr_col2cls = {k: v for k, v in curr_col2cls if v is not None}  # _instance_ color -> class name
        else:
            colored_img = segmentation_img
            curr_col2cls = self.color2class_name

        ann = sly.Annotation.from_img_path(img_path)

        for color, class_name in curr_col2cls.items():
            mask = np.all(colored_img == color, axis=2)  # exact match (3-channel img & rgb color)

            bitmap = sly.Bitmap(data=mask)
            obj_class = sly.ObjClass(name=class_name, geometry_type=sly.Bitmap, color=color)

            if not self.obj_classes.has_key(class_name):
                self.obj_classes = self.obj_classes.add(obj_class)

            ann = ann.add_label(sly.Label(bitmap, obj_class))
            #  clear used pixels in mask to check missing colors, see below
            colored_img[mask] = (0, 0, 0)

        if np.sum(colored_img) > 0:
            sly.logger.warn('Not all objects or classes are captured from source segmentation.')

        return ann
Exemple #15
0
def get_ann(img_path, inst_path, default_classes_colors):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)
    instance_img = sly.image.read(inst_path)

    img_gray = cv2.cvtColor(instance_img, cv2.COLOR_BGR2GRAY)
    _, mask_foreground = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
    mask_background = (img_gray == 0)

    class_name = 'background'
    new_color = default_classes_colors[class_name]
    bitmap = sly.Bitmap(data=mask_background)

    if not classes_dict.has_key(class_name):
        obj_class = sly.ObjClass(name=class_name,
                                 geometry_type=sly.Bitmap,
                                 color=new_color)
        classes_dict = classes_dict.add(obj_class)
    ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))

    im2, contours, hierarchy = cv2.findContours(mask_foreground,
                                                cv2.RETR_EXTERNAL,
                                                cv2.CHAIN_APPROX_SIMPLE)
    class_name = 'skin'
    new_color = default_classes_colors[class_name]
    for i in range(len(contours)):
        arr = np.array(contours[i], dtype=int)
        mask_temp = np.zeros(instance_img.shape, dtype=np.uint8)
        cv2.fillPoly(mask_temp, [np.int32(arr)], (255, 255, 255))
        mask_temp = cv2.split(mask_temp)[0]
        mask = mask_temp.astype(np.bool)
        bitmap = sly.Bitmap(data=mask)

        if not classes_dict.has_key(class_name):
            obj_class = sly.ObjClass(name=class_name,
                                     geometry_type=sly.Bitmap,
                                     color=new_color)
            classes_dict = classes_dict.add(obj_class)
        ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
    return ann
Exemple #16
0
 def create_meta(config, side):
     meta = sly.ProjectMeta()
     classes = [
         sly.ObjClass(class_name, sly.AnyGeometry)
         for class_name in config[side]
     ]
     meta = meta.add_obj_classes(classes)
     meta = meta.add_tag_metas([
         sly.TagMeta("case_id", sly.TagValueType.ANY_STRING),
         sly.TagMeta("validation",
                     sly.TagValueType.ONEOF_STRING,
                     possible_values=["accepted", "rejected"]),
         sly.TagMeta("finished", sly.TagValueType.NONE)
     ])
     return meta
Exemple #17
0
def process_meta(input_meta):
    classes_mapping = {}
    output_meta = sly.ProjectMeta(obj_classes=[],
                                  tag_metas=input_meta.tag_metas)
    for obj_class in input_meta.obj_classes:
        classes_mapping[obj_class.name] = '{}_bbox'.format(obj_class.name)
        new_obj_class = sly.ObjClass(classes_mapping[obj_class.name],
                                     sly.Rectangle,
                                     color=obj_class.color)
        output_meta = output_meta.add_obj_class(new_obj_class)
    output_meta = output_meta.add_tag_meta(
        sly.TagMeta('train', sly.TagValueType.NONE))
    output_meta = output_meta.add_tag_meta(
        sly.TagMeta('val', sly.TagValueType.NONE))
    return output_meta, classes_mapping
Exemple #18
0
    def _read_colors(self):
        if os.path.isfile(self.colors_file):
            sly.logger.info('Will try to read segmentation colors from provided file.')
            color_info = load_json_file(self.colors_file)
        else:
            sly.logger.info('Will use default Mapillary color mapping.')
            default_filepath = os.path.join(os.path.dirname(__file__), 'colors.json')
            color_info = load_json_file(default_filepath)

        self._class_id_to_object_class = {
            color_id: sly.ObjClass(name=el['readable'], geometry_type=sly.Bitmap, color=el['color']) for color_id, el
            in enumerate(color_info['labels'])}
        sly.logger.info('Found {} class(es).'.format(len(self._class_id_to_object_class)),
                        extra={
                            'classes': list(obj_class.name for obj_class in self._class_id_to_object_class.values())})
        self._instance_id_to_obj_class = InstanceIdToObjClass(self._class_id_to_object_class)
Exemple #19
0
    def __init__(self, class_title_to_color):
        self.class_title_to_color = class_title_to_color
        self.color_id_to_class_title = {
            code_color(*color): class_title
            for class_title, color in class_title_to_color.items()
        }

        self.id_to_obj_class = {
            color_id: sly.ObjClass(name=class_name,
                                   geometry_type=sly.Bitmap,
                                   color=self.class_title_to_color[class_name])
            for color_id, class_name in self.color_id_to_class_title.items()
        }

        self.settings = load_json_file(sly.TaskPaths.TASK_CONFIG_PATH)
        self.src_datasets = self.read_datasets_from_path()
Exemple #20
0
    def _read_colors(self):
        if os.path.isfile(self.colors_file):
            sly.logger.info('Will try to read segmentation colors from provided file.')
            in_lines = filter(None, map(str.strip, open(self.colors_file, 'r').readlines()))
            in_splitted = (x.split() for x in in_lines)
            # Format: {name: (R, G, B)}, values [0; 255]
            self.cls2col = {x[0]: (int(x[1]), int(x[2]), int(x[3])) for x in in_splitted}
        else:
            sly.logger.info('Will use default PascalVOC color mapping.')
            self.cls2col = default_classes_colors

        obj_classes_list = [sly.ObjClass(name=class_name, geometry_type=sly.Bitmap, color=color) for class_name, color in self.cls2col.items()]
        self.obj_classes = self.obj_classes.add_items(obj_classes_list)

        sly.logger.info('Determined {} class(es).'.format(len(self.cls2col)),
                        extra={'classes': list(self.cls2col.keys())})
        self.color2class_name = {v: k for k, v in self.cls2col.items()}
Exemple #21
0
def get_ann(img_path, coords, words):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)
    class_name = 'text'
    color = [255, 0, 0]
    name = img_path.split('/')[-1]
    line = coords[name]
    points = [sly.PointLocation(line[i + 1], line[i]) for i in range(0, 8, 2)]
    polygon = sly.Polygon(exterior=points, interior=[])
    if not classes_dict.has_key(class_name):
        obj_class = sly.ObjClass(name=class_name,
                                 geometry_type=sly.Polygon,
                                 color=color)
        classes_dict = classes_dict.add(obj_class)  # make it for meta.json
    ann = ann.add_label(
        sly.Label(polygon, classes_dict.get(class_name), None, words[name]))
    return ann
def upload_project_meta(api, project_id, config_yaml_info):
    classes = []
    for class_id, class_name in enumerate(config_yaml_info["names"]):
        yaml_class_color = config_yaml_info["colors"][class_id]
        obj_class = sly.ObjClass(name=class_name,
                                 geometry_type=sly.Rectangle,
                                 color=yaml_class_color)
        classes.append(obj_class)

    tags_arr = [
        sly.TagMeta(name="train", value_type=sly.TagValueType.NONE),
        sly.TagMeta(name="val", value_type=sly.TagValueType.NONE)
    ]
    project_meta = sly.ProjectMeta(
        obj_classes=sly.ObjClassCollection(items=classes),
        tag_metas=sly.TagMetaCollection(items=tags_arr))
    api.project.update_meta(project_id, project_meta.to_json())
    return project_meta
Exemple #23
0
def construct_model_meta(model):
    names = model.module.names if hasattr(model, 'module') else model.names

    colors = None
    if hasattr(model, 'module') and hasattr(model.module, 'colors'):
        colors = model.module.colors
    elif hasattr(model, 'colors'):
        colors = model.colors
    else:
        colors = []
        for i in range(len(names)):
            colors.append(sly.color.generate_rgb(exist_colors=colors))

    obj_classes = [sly.ObjClass(name, sly.Rectangle, color) for name, color in zip(names, colors)]
    tags = [sly.TagMeta(CONFIDENCE, sly.TagValueType.ANY_NUMBER)]

    meta = sly.ProjectMeta(obj_classes=sly.ObjClassCollection(obj_classes),
                           tag_metas=sly.TagMetaCollection(tags))
    return meta
Exemple #24
0
def get_ann(img_path, inst_path):
    global classes_dict
    default_classes_colors = {}
    colors = [(0, 0, 0)]
    ann = sly.Annotation.from_img_path(img_path)

    if inst_path is not None:
        mat = scipy.io.loadmat(inst_path)
        mask = mat['anno']
        all_objects = mask[0][0][1][0]
        class_mask, unique_class_mask = {}, []

        for obj in all_objects:
            object_name, object_mask = obj[0], obj[2]
            class_mask[object_name[0]] = object_mask
            unique_class_mask.append([object_name[0], object_mask])
            if len(obj[3]) > 0:
                all_parts = obj[3][0]
                for part in all_parts:
                    class_mask[part[0][0]] = part[1]
                    unique_class_mask.append([part[0][0], part[1]])

        for class_name in class_mask.keys():
            if class_name not in default_classes_colors:
                new_color = generate_rgb(colors)
                colors.append(new_color)
                default_classes_colors[class_name] = new_color

        for temp in unique_class_mask:
            class_name, cl_mask = temp
            mask = cl_mask.astype(np.bool)
            new_color = default_classes_colors[class_name]
            bitmap = sly.Bitmap(data=mask)

            if not classes_dict.has_key(class_name):
                obj_class = sly.ObjClass(name=class_name,
                                         geometry_type=sly.Bitmap,
                                         color=new_color)
                classes_dict = classes_dict.add(
                    obj_class)  # make it for meta.json
                ann = ann.add_label(
                    sly.Label(bitmap, classes_dict.get(class_name)))
    return ann
Exemple #25
0
    def _load_cityscapes_annotation(self, orig_img_path, orig_ann_path) -> sly.Annotation:
        json_data = json.load(open(orig_ann_path))
        ann = sly.Annotation.from_img_path(orig_img_path)

        for obj in json_data['objects']:
            class_name = obj['label']
            if class_name == 'out of roi':
                polygon = obj['polygon'][:5]
                interiors = [obj['polygon'][5:]]
            else:
                polygon = obj['polygon']
                interiors = []

            interiors = [self.convert_points(interior) for interior in interiors]
            polygon = sly.Polygon(self.convert_points(polygon), interiors)
            obj_class = sly.ObjClass(name=class_name, geometry_type=sly.Polygon, color=sly.color.random_rgb())
            ann = ann.add_label(sly.Label(polygon, obj_class))
            if not self.obj_classes.has_key(class_name):
                self.obj_classes = self.obj_classes.add(obj_class)
        return ann
Exemple #26
0
def get_ann(img_path, coords_text):
    global classes_dict
    ann = sly.Annotation.from_img_path(img_path)
    class_name = 'text'
    color = [255, 0, 255]
    len_polygon_points = 9
    for i in range(0, len(coords_text), len_polygon_points):
        line = coords_text[i:i + len_polygon_points]
        text = line[8]
        points = [
            sly.PointLocation(line[i + 1], line[i]) for i in range(0, 8, 2)
        ]
        polygon = sly.Polygon(exterior=points, interior=[])
        if not classes_dict.has_key(class_name):
            obj_class = sly.ObjClass(name=class_name,
                                     geometry_type=sly.Polygon,
                                     color=color)
            classes_dict = classes_dict.add(obj_class)  # make it for meta.json
        ann = ann.add_label(
            sly.Label(polygon, classes_dict.get(class_name), None, text))
    return ann
def main():
    args = parse_args()
    with open(args.in_file) as f:
        lines = f.readlines()
    names_list = [ln for ln in (line.strip() for line in lines) if ln]

    out_classes = sly.ObjClassCollection(items=[
        sly.ObjClass(name=name, geometry_type=sly.Rectangle)
        for name in names_list
    ])

    cls_mapping = {x: idx for idx, x in enumerate(names_list)}
    res_cfg = {
        SETTINGS: {},
        'out_classes': out_classes.to_json(),
        'class_title_to_idx': cls_mapping,
    }

    config_filename = os.path.join(args.out_dir,
                                   sly.TaskPaths.MODEL_CONFIG_NAME)
    dump_json_file(res_cfg, config_filename, indent=4)
    print('Done: {} -> {}'.format(args.in_file, config_filename))
Exemple #28
0
def get_ann(img_path, inst_path, number_class, pixel_color):
    global classes_dict
    if inst_path is not None:
        instance_img = sly.image.read(inst_path)
        class_mask = cv2.split(instance_img)[0]
        class_mask = np.where(class_mask != 0, class_mask, 10)
        current_color2class = {}
        unique_pixels = np.unique(class_mask)
        for pixel in unique_pixels:
            current_color2class[pixel] = number_class[pixel]
    ann = sly.Annotation.from_img_path(img_path)
    for pixel, class_name in current_color2class.items():
        new_color = pixel_color[pixel]
        mask = np.where(class_mask == pixel, class_mask, 0)
        mask = mask.astype(np.bool)
        bitmap = sly.Bitmap(data=mask)
        if not classes_dict.has_key(class_name):
            obj_class = sly.ObjClass(name=class_name,
                                     geometry_type=sly.Bitmap,
                                     color=list(new_color))
            classes_dict = classes_dict.add(obj_class)
        ann = ann.add_label(sly.Label(bitmap, classes_dict.get(class_name)))
    return ann
Exemple #29
0
    def convert_annotation(src_ann, dst_project_meta):
        new_labels = []
        for idx, lbl in enumerate(src_ann.labels):
            lbl: sly.Label
            if lbl.obj_class.geometry_type == sly.AnyGeometry:
                actual_geometry = type(lbl.geometry)

                new_class_name = "{}_{}".format(
                    lbl.obj_class.name, actual_geometry.geometry_name())
                new_class = dst_project_meta.get_obj_class(new_class_name)
                if new_class is None:
                    new_class = sly.ObjClass(name=new_class_name,
                                             geometry_type=actual_geometry,
                                             color=sly.color.random_rgb())
                    dst_project_meta = dst_project_meta.add_obj_class(
                        new_class)
                    api.project.update_meta(dst_project.id,
                                            dst_project_meta.to_json())

                new_labels.append(lbl.clone(obj_class=new_class))
            else:
                new_labels.append(lbl)
        return src_ann.clone(labels=new_labels), dst_project_meta
Exemple #30
0
def generate_annotation(src_img_path, inst_path, id_to_class, class_to_color,
                        classes_collection):
    ann = sly.Annotation.from_img_path(src_img_path)

    if os.path.isfile(inst_path):
        instance_img = cv2.imread(inst_path,
                                  cv2.IMREAD_UNCHANGED)  # expect uint16
        col2coord = get_color_to_coordinates(instance_img)

        # Some dirty hack to determine class correctly, low byte is unused. (Low byte describe)
        current_color_to_class = {
            color: id_to_class[int(color // 256)]
            for color in col2coord.keys()
        }

        for color, class_name in current_color_to_class.items():
            mask = (instance_img == color)  # exact match for 1d uint16
            bitmap = sly.Bitmap(mask)

            if not classes_collection.has_key(class_name):
                obj_class = sly.ObjClass(name=class_name,
                                         geometry_type=sly.Bitmap,
                                         color=class_to_color.get(
                                             class_name,
                                             sly.color.random_rgb()))
                classes_collection = classes_collection.add(obj_class)

            ann = ann.add_label(
                sly.Label(bitmap, classes_collection.get(class_name)))
            instance_img[mask] = 0  # to check missing colors, see below

        if np.sum(instance_img) > 0:
            sly.logger.warn(
                'Not all objects or classes are captured from source segmentation.',
                extra={})
    return ann, classes_collection