#import re from time import time from support import ids_dataset from support import ids scan_type = 'B' #scan_type = 'T' path_data = '/home/lfabbrini/data' dataset_dir = 'NN_PNGrgbSScan_bal_m_wD_TgU_wUnkGT_P0e001__NAcq40_Tex4_201831211597/STC' model_dir = 'mdl_tr80val10te10fs1_0001' #model_dir = 'mdl_debug' grayscale = False filename = scan_type + '_sublist_train_and_test.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_train, y_train) = ids_dataset.load_data(filelist) filename = scan_type + '_sublist_train_and_test_mean.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_mu, y_mu) = ids_dataset.load_data(filelist) filename = scan_type + '_sublist_val.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_test, y_test) = ids_dataset.load_data(filelist) #filename = scan_type+'_sublist_val.npz' #filelist = os.path.join(path_data,dataset_dir,model_dir,filename) #(x_val,y_val) = ids_dataset.load_data(filelist) #%%Debug plt.imshow(x_train[0])
model_dir = 'mdl_tr80val10te10fs1_tex1_0001_dz1_dz1' #downsampling_xyz = [1,1,1] #model_dir = 'mdl_tr80val10te10fs1_tex1_0002_dz1_dz6' #downsampling_xyz = [1,1,6] #model_dir = 'mdl_debug' conv_type = '3D' #2D,2Dsep #conv_type='2D'#2D,2Dsep #conv_type='2Dsep'#2D,2Dsep stacked_scan = 9 downsampling_xyz = [1, 1, 6] filename = data_type + '_sublist_train_mean.hdf5' #filename = data_type+'_sublist_train_mean_FA.hdf5' file_to_mean = os.path.join(path_data, dataset_dir, model_dir, filename) #Debug hdf5_format = True (x_mu, y_mu) = ids_dataset.load_data(file_to_mean, hdf5_format) #%%Preprocessing To have same PNG performance (OBS: z have the double of sample than .png image in older dataset) from functools import partial #clip data to x_sat,-x_sat #input are in [0,1] representing value in [-10,10] #map x_sat from [-10,10] to [0,1] x_sat_h = 0.5 x_sat_l = -0.5 x_sat_h = (x_sat_h + 10) / 20 x_sat_l = (x_sat_l + 10) / 20 clip_ = partial(ids.clip, x_min=x_sat_l, x_max=x_sat_h) linearmap_ = partial(ids.linearmap, x_min=x_sat_l, x_max=x_sat_h,
#path_data = '/home/lfabbrini/data' #path_data = '/media/sf_share/' path_data = 'c:/Users/l.fabbrini/share/' dataset_dir = 'NN_HDF5vol_0e75m_ext0e30_P0e001__NAcq40_Tex0_2018410112537/STC' #model_dir = 'mdl_tr70val15te15fs1_tex3_0001' #model_dir = 'mdl_tr80val10te10fs1_tex1_0001_dz1_dz1' #downsampling_xyz = [1,1,1] model_dir = 'mdl_tr80val10te10fs1_tex1_0002_dz1_dz6' #downsampling_xyz = [1,1,6] #model_dir = 'mdl_debug' grayscale = False hdf5_format = True max_value = 1 filename_base = data_type + '_sublist_test' filename_h5 = filename_base + '.hdf5' filelist = os.path.join(path_data, dataset_dir, model_dir, filename_h5) (x_val, y_val) = ids_dataset.load_data(filelist, hdf5_format) filename = scan_type + '_sublist_train_mean.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_mu, y_mu) = ids_dataset.load_data(filelist, hdf5_format) x_val = (x_val - x_mu) / max_value #%%Load model from keras.models import load_model modelweight_dir = 'C:/Users/l.fabbrini/spyder/hdf5/' #modelweight_dir = 'C:/Users/l.fabbrini/spyder/png/' #modelweight_to_load = 'ids_Bscan0e01sgd1521021533.h5' #modelweight_to_load = 'ids_Bscan0e01sgd1521101393.h5' #modelweight_to_load = 'ids_Cscan0e001sgd1521723396.h5' #modelweight_to_load = 'ids_Cscan0e001sgd1521723396-05-0.95.hdf5' #modelweight_to_load = 'ids_Cscan0e01sgd1521802004-10-0.93.hdf5'
import os #import re from time import time from support import ids_dataset from support import ids scan_type = 'B' path_data = '/home/lfabbrini/data' dataset_dir = 'NN_PNGrgbSScan_bal_m_wD_TgU_wUnkGT_P0e001__NAcq40_Tex4_201831211597/STC' model_dir = 'mdl_tr80val10te10fs1_0001' #model_dir = 'mdl_debug' grayscale = False filename = scan_type + '_sublist_train_and_test.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_train_B, y_train_B) = ids_dataset.load_data(filelist) filename = scan_type + '_sublist_val.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_test_B, y_test_B) = ids_dataset.load_data(filelist) scan_type = 'T' filename = scan_type + '_sublist_train_and_test.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_train_T, y_train_T) = ids_dataset.load_data(filelist) filename = scan_type + '_sublist_val.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_test_T, y_test_T) = ids_dataset.load_data(filelist) x_train = np.concatenate((x_train_B, x_train_T), axis=0)
#path_data = '/home/lfabbrini/data' #path_data = '/media/sf_share/' path_data = 'c:/Users/l.fabbrini/share/' dataset_dir = 'NN_HDF5vol_0e75m_ext0e30_P0e001__NAcq40_Tex0_2018410112537/STC' #model_dir = 'mdl_tr70val15te15fs1_tex3_0001' #model_dir = 'mdl_tr80val10te10fs1_tex1_0001_dz1_dz1' #downsampling_xyz = [1,1,1] model_dir = 'mdl_tr80val10te10fs1_tex1_0002_dz1_dz6' #downsampling_xyz = [1,1,6] #model_dir = 'mdl_debug' grayscale=False hdf5_format=True max_value = 1 filename = data_type+'_sublist_train.hdf5' filelist = os.path.join(path_data,dataset_dir,model_dir,filename) (x_train,y_train) = ids_dataset.load_data(filelist,hdf5_format) filename = data_type+'_sublist_train_mean.hdf5' #filename = data_type+'_sublist_train_mean_FA.hdf5' filelist = os.path.join(path_data,dataset_dir,model_dir,filename) (x_mu,y_mu) = ids_dataset.load_data(filelist,hdf5_format) filename = data_type+'_sublist_test.hdf5' filelist = os.path.join(path_data,dataset_dir,model_dir,filename) (x_test,y_test) = ids_dataset.load_data(filelist,hdf5_format) filename = data_type+'_sublist_val.hdf5' filelist = os.path.join(path_data,dataset_dir,model_dir,filename) (x_val,y_val) = ids_dataset.load_data(filelist,hdf5_format)
#scan_type = 'T' scan_type = 'C' path_data = '/home/lfabbrini/data' dataset_dir = 'NN_PNGrgbSScan_bal_m_wD_TgU_wUnkGT_P0e001__NAcq40_Tex4_201831211597/STC' model_dir = 'mdl_tr80val10te10fs1_0001' #model_dir = 'mdl_debug' grayscale = False filename = scan_type + '_sublist_val.txt' (x_val_c, y_val_c), (anom_id, acq_id) = ids.get_central_data_from_filelist( filename, path_data, dataset_dir, model_dir, grayscale) filename = scan_type + '_sublist_test.npz' #test to reply tensorboard performance #filename = scan_type+'_sublist_val.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_val, y_val) = ids_dataset.load_data(filelist) filename = scan_type + '_sublist_train_mean.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_mu, y_mu) = ids_dataset.load_data(filelist) x_val = (x_val - x_mu) / 255 x_val_c = (x_val_c - x_mu) / 255 #%%Load model from keras.models import load_model #model_to_load = 'ids_Bscan0e01sgd1521021533.h5' #model_to_load = 'ids_Bscan0e01sgd1521101393.h5' #model_to_load = 'ids_Cscan0e001sgd1521723396.h5' #model_to_load = 'ids_Cscan0e001sgd1521723396-05-0.95.hdf5' model_to_load = 'ids_Cscan0e01sgd1521802004-10-0.93.hdf5' model = load_model(model_to_load)
#scan_type = 'B' #scan_type = 'T' scan_type = 'C' path_data = '/home/lfabbrini/data' dataset_dir = 'NN_PNGrgbSScan_bal_m_wD_TgU_wUnkGT_P0e001__NAcq40_Tex4_201831211597/STC' model_dir = 'mdl_tr80val10te10fs1_0001' #model_dir = 'mdl_debug' grayscale = False filename = scan_type + '_sublist_val.txt' (x_val_c, y_val_c), (anom_id, acq_id) = ids.get_central_data_from_filelist( filename, path_data, dataset_dir, model_dir, grayscale) filename = scan_type + '_sublist_train_mean.npz' filelist = os.path.join(path_data, dataset_dir, model_dir, filename) (x_mu, y_mu) = ids_dataset.load_data(filelist) x_val_c = (x_val_c - x_mu) / 255 #%% load image from keras.preprocessing import image import re is_target_id_re = re.compile(r"T18") #is_target_id_re = re.compile(r"FA21") img = x_val_c[0] for i, anom in enumerate(anom_id): is_target_id_res = is_target_id_re.search(anom) if is_target_id_res != None: img = x_val_c[i] print('image {} found!'.format(anom)) break