def test_explorer(): print(pd.datetime.now()) n_rows = 200 n_cluster = 10 n_simplequestions = 200 n_hardquestions = 200 Xst = getXst(nrows=n_rows) y_true = getytrue(Xst=Xst) print(pd.datetime.now(), 'data loaded') connector = DfConnector(scorer=Pipeline( steps=[('scores', FeatureUnion(_score_list) ), ('imputer', SimpleImputer(strategy='constant', fill_value=0))])) explorer = Explorer(clustermixin=KBinsCluster(n_clusters=n_cluster), n_simple=n_simplequestions, n_hard=n_hardquestions) connector.fit(X=Xst) # Xsm is the transformed output from the connector, i.e. the score matrix Xsm = connector.transform(X=Xst) print(pd.datetime.now(), 'score ok') # ixc is the index corresponding to the score matrix ixc = Xsm.index ix_simple = explorer.ask_simple(X=pd.DataFrame(data=Xsm, index=ixc), fit_cluster=True) print(pd.datetime.now(), 'length of ix_simple {}'.format(ix_simple.shape[0])) sbs_simple = connector.getsbs(X=Xst, on_ix=ix_simple) print('***** SBS SIMPLE ******') print(sbs_simple.sample(5)) print('*****') y_simple = y_true.loc[ix_simple] ix_hard = explorer.ask_hard(X=pd.DataFrame(data=Xsm, index=ixc), y=y_simple) print(pd.datetime.now(), 'length of ix_hard {}'.format(ix_hard.shape[0])) sbs_hard = connector.getsbs(X=Xst, on_ix=ix_hard) print(sbs_hard.sample(5)) print('*****') y_train = y_true.loc[ix_simple.union(ix_hard)] print('length of y_train: {}'.format(y_train.shape[0])) explorer.fit(X=pd.DataFrame(data=Xsm, index=ixc), y=y_train, fit_cluster=True) print('results of pred:\n', pd.Series(explorer.predict(X=Xsm)).value_counts()) print('****')
def test_pruning(): print('start', pd.datetime.now()) n_rows = 200 n_cluster = 10 n_simplequestions = 200 n_hardquestions = 200 Xst = getXst(nrows=n_rows) y_true = getytrue(Xst=Xst) print(pd.datetime.now(), 'data loaded') connector = DfConnector(scorer=Pipeline( steps=[('scores', FeatureUnion(_score_list) ), ('imputer', SimpleImputer(strategy='constant', fill_value=0))])) explorer = Explorer(clustermixin=KBinsCluster(n_clusters=n_cluster), n_simple=n_simplequestions, n_hard=n_hardquestions) connector.fit(X=Xst) # Xst is the transformed output from the connector, i.e. the score matrix Xsm = connector.transform(X=Xst) print(pd.datetime.now(), 'score ok') # ixc is the index corresponding to the score matrix ixc = Xsm.index y_true = y_true.loc[ixc] ix_simple = explorer.ask_simple(X=pd.DataFrame(data=Xsm, index=ixc), fit_cluster=True) ix_hard = explorer.ask_hard(X=pd.DataFrame(data=Xsm, index=ixc), y=y_true.loc[ix_simple]) ix_train = ix_simple.union(ix_hard) print('number of training samples:{}'.format(ix_train.shape[0])) X_train = pd.DataFrame(data=Xsm, index=ixc).loc[ix_train] y_train = y_true.loc[ix_train] explorer.fit(X=X_train, y=y_train, fit_cluster=True) y_pruning = explorer.predict(X=Xsm) y_pruning = pd.Series(data=y_pruning, name='y_pruning', index=ixc) y_pred = (y_pruning > 0).astype(int) precision = precision_score(y_true=y_true, y_pred=y_pred) recall = recall_score(y_true=y_true, y_pred=y_pred) accuracy = balanced_accuracy_score(y_true=y_true, y_pred=y_pred) print('***\npruning scores:\n') print('precision score:{}\n recall score:{}\n balanced accuracy score:{}'. format(precision, recall, accuracy))
('scores', FeatureUnion(_lr_score_list)), ('imputer', SimpleImputer(strategy='constant', fill_value=0))] ) ) ### Fit the cluster non-supervizes explorer = Explorer(clustermixin=KBinsCluster(n_clusters=n_cluster), n_simple=n_simplequestions, n_hard=n_pointedquestions) Xst = connector.fit_transform(X=Xst) explorer.fit_cluster(X=Xst) ### Ask simple questions ix_simple = explorer.ask_simple(X=Xst) Sbs_simple = connector.getsbs(X=Xst, on_ix=ix_simple) y_simple = y_true.loc[ix_simple] ### Fit the cluser with supervized data explorer.fit(X=Xst, y=y_simple, fit_cluster=False) ### Ask hard (pointed) questions ix_hard = explorer.ask_hard(X=Xst, y=y_simple) Sbs_hard = connector.getsbs(X=Xst, on_ix=ix_hard) y_hard = y_true.loc[ix_hard] ### Obtain the results of the labels y_questions = y_true.loc[ix_hard.union(ix_simple)] ## Define the pruning pipe pipe = PruningPipe( connector=connector, pruningclf=explorer, sbsmodel=FeatureUnion(transformer_list=_sbs_score_list),