def test_case(scale, shift, true_z, true_ldj): with self.subTest(scale=scale, shift=shift): bijection = ScalarAffineBijection(scale=scale, shift=shift) z, ldj = bijection.forward(x) self.assertEqual(z, true_z) self.assertEqual( ldj, torch.full([batch_size], true_ldj * np.prod(shape), dtype=torch.float))
def __init__(self, num_bits, in_channels, out_channels, mid_channels, num_blocks, depth, dropout=0.0): super(ContextInit, self).__init__() self.dequant = UniformDequantization(num_bits=num_bits) self.shift = ScalarAffineBijection(shift=-0.5) self.encode = None if mid_channels > 0 and num_blocks > 0 and depth > 0: self.encode = DenseNet(in_channels=in_channels, out_channels=out_channels, num_blocks=num_blocks, mid_channels=mid_channels, depth=depth, growth=mid_channels, dropout=dropout, gated_conv=False, zero_init=False)
mid_channels=64, depth=1, growth=16, dropout=0.0, gated_conv=True, zero_init=True), ElementwiseParams2d(2)) #model = NDPFlow(base_dist=[StandardNormal((16,7,7)), StandardNormal((latent_size,))], model = NDPFlow(base_dist=[None, StandardNormal((latent_size,))], transforms=[ UniformDequantization(num_bits=8), ActNormBijection2d(1), ScalarAffineBijection(scale=2.0), ScalarAffineBijection(shift=-0.5), Squeeze2d(), ActNormBijection2d(4), Conv1x1(4), AffineCouplingBijection(net(4)), ActNormBijection2d(4), Conv1x1(4), AffineCouplingBijection(net(4)), Squeeze2d(), ActNormBijection2d(16), Conv1x1(16), AffineCouplingBijection(net(16)), ActNormBijection2d(16), Conv1x1(16), AffineCouplingBijection(net(16)), VAE(encoder=encoder, decoder=decoder) ]).to(device) print(model) ########### ## Optim ## ###########
def test_case(scale, shift, true_x): with self.subTest(scale=scale, shift=shift): bijection = ScalarAffineBijection(scale=scale, shift=shift) x = bijection.inverse(z) self.assertEqual(x, true_x)
def test_case(scale, shift): bijection = ScalarAffineBijection(scale=scale, shift=shift) self.assert_bijection_is_well_behaved(bijection, x, z_shape=(batch_size, *shape))
def __init__(self, data_shape, num_bits, base_distribution, num_scales, num_steps, actnorm, vae_hidden_units, coupling_network, dequant, dequant_steps, dequant_context, coupling_blocks, coupling_channels, coupling_dropout, coupling_gated_conv=None, coupling_depth=None, coupling_mixtures=None): assert len(base_distribution) == 1, "Only a single base distribution is supported" transforms = [] current_shape = data_shape if num_steps == 0: num_scales = 0 if dequant == 'uniform' or num_steps == 0 or num_scales == 0: # no bijective flows defaults to only using uniform dequantization transforms.append(UniformDequantization(num_bits=num_bits)) elif dequant == 'flow': dequantize_flow = DequantizationFlow(data_shape=data_shape, num_bits=num_bits, num_steps=dequant_steps, coupling_network=coupling_network, num_context=dequant_context, num_blocks=coupling_blocks, mid_channels=coupling_channels, depth=coupling_depth, dropout=coupling_dropout, gated_conv=coupling_gated_conv, num_mixtures=coupling_mixtures) transforms.append(VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits)) # Change range from [0,1]^D to [-0.5, 0.5]^D transforms.append(ScalarAffineBijection(shift=-0.5)) for scale in range(num_scales): # squeeze to exchange height and width for more channels transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) # Dimension preserving components for step in range(num_steps): if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) transforms.append(Conv1x1(current_shape[0])) if coupling_network == "conv": transforms.append( Coupling(in_channels=current_shape[0], num_blocks=coupling_blocks, mid_channels=coupling_channels, depth=coupling_depth, dropout=coupling_dropout, gated_conv=coupling_gated_conv, coupling_network=coupling_network)) else: transforms.append( MixtureCoupling(in_channels=current_shape[0], mid_channels=coupling_channels, num_mixtures=coupling_mixtures, num_blocks=coupling_blocks, dropout=coupling_dropout)) # Non-dimension preserving flows: reduce the dimensionality of data by 2 (channel-wise) if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) assert current_shape[0] % 2 == 0, f"Current shape {current_shape[1]}x{current_shape[2]} must be divisible by two" latent_size = (current_shape[0] * current_shape[1] * current_shape[2]) // 2 encoder = ConditionalNormal( ConvEncoderNet(in_channels=current_shape[0], out_channels=latent_size, mid_channels=vae_hidden_units, max_pool=True, batch_norm=True), split_dim=1) decoder = ConditionalNormal( ConvDecoderNet(in_channels=latent_size, out_shape=(current_shape[0] * 2, current_shape[1], current_shape[2]), mid_channels=list(reversed(vae_hidden_units)), batch_norm=True, in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1)), split_dim=1) transforms.append(VAE(encoder=encoder, decoder=decoder)) current_shape = (current_shape[0] // 2, current_shape[1], current_shape[2]) if scale < num_scales - 1: # reshape latent sample to have height and width transforms.append(Reshape(input_shape=(latent_size,), output_shape=current_shape)) # Base distribution for dimension preserving portion of flow if base_distribution == "n": base_dist = StandardNormal((latent_size,)) elif base_distribution == "c": base_dist = ConvNormal2d((latent_size,)) elif base_distribution == "u": base_dist = StandardUniform((latent_size,)) else: raise ValueError("Base distribution must be one of n=Normal, u=Uniform, or c=ConvNormal") # for reference save the shape output by the bijective flow self.latent_size = latent_size self.flow_shape = current_shape super(MultilevelCompressiveFlow, self).__init__(base_dist=[None, base_dist], transforms=transforms)
def __init__(self, data_shape, cond_shape, num_bits, num_scales, num_steps, actnorm, pooling, dequant, dequant_steps, dequant_context, densenet_blocks, densenet_channels, densenet_depth, densenet_growth, dropout, gated_conv, init_context): transforms = [] current_shape = data_shape if dequant == 'uniform': transforms.append(UniformDequantization(num_bits=num_bits)) elif dequant == 'flow': dequantize_flow = DequantizationFlow( data_shape=data_shape, num_bits=num_bits, num_steps=dequant_steps, num_context=dequant_context, num_blocks=densenet_blocks, mid_channels=densenet_channels, depth=densenet_depth, dropout=dropout, gated_conv=gated_conv) transforms.append( VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits)) # Change range from [0,1]^D to [-0.5, 0.5]^D transforms.append(ScalarAffineBijection(shift=-0.5)) # Initial squeeze transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) # Pooling flows for scale in range(num_scales): for step in range(num_steps): if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) transforms.extend([ Conv1x1(num_channels=current_shape[0]), #ConditionalConv1x1(cond_shape=cond_shape, num_channels=current_shape[0]), # for conditional images! ConditionalCoupling(in_channels=current_shape[0], num_context=cond_shape[0], num_blocks=densenet_blocks, mid_channels=densenet_channels, depth=densenet_depth, dropout=dropout, gated_conv=gated_conv) ]) if scale < num_scales - 1: if pooling == 'none': transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) else: if pooling == 'slice': noise_shape = (current_shape[0] * 2, current_shape[1] // 2, current_shape[2] // 2) transforms.append(Squeeze2d()) transforms.append( Slice(StandardNormal(noise_shape), num_keep=current_shape[0] * 2, dim=1)) current_shape = (current_shape[0] * 2, current_shape[1] // 2, current_shape[2] // 2) elif pooling == 'max': noise_shape = (current_shape[0] * 3, current_shape[1] // 2, current_shape[2] // 2) decoder = StandardHalfNormal(noise_shape) transforms.append( SimpleMaxPoolSurjection2d(decoder=decoder)) current_shape = (current_shape[0], current_shape[1] // 2, current_shape[2] // 2) else: raise ValueError( "pooling argument must be either slice, max or none" ) else: if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) # for reference save the shape output by the bijective flow self.flow_shape = current_shape super(CondPoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape), transforms=transforms)
if not os.path.exists('figures'): os.makedirs('figures') if not os.path.exists('tb'): os.makedirs('tb') ################## ## Specify data ## ################## train_loader, valid_loader, test_loader = get_data(args) ################### ## Specify model ## ################### transforms = [ PermuteAxes((0, 2, 1)), # (B, 50, 2) -> (B, 2, 50) ScalarAffineBijection(scale=1 / 28, shift=-0.5), StochasticPermutation(dim=2), ] D = 2 # Number of data dimensions L = 50 # Number of points P = 2 if args.affine else 1 # Number of elementwise parameters def dimwise(transforms): net = nn.Sequential( DenseTransformer(d_input=D // 2, d_output=P * D // 2, d_model=args.d_model, nhead=args.nhead, num_layers=args.num_layers,
def __init__(self, data_shape, cond_shape, num_bits, num_scales, num_steps, actnorm, conditional_channels, lowres_encoder_channels, lowres_encoder_blocks, lowres_encoder_depth, lowres_upsampler_channels, pooling, compression_ratio, coupling_network, coupling_blocks, coupling_channels, coupling_dropout=0.0, coupling_gated_conv=None, coupling_depth=None, coupling_mixtures=None, dequant="flow", dequant_steps=4, dequant_context=32, dequant_blocks=2, augment_steps=4, augment_context=32, augment_blocks=2, augment_size=None, checkerboard_scales=[], tuple_flip=True): if len(compression_ratio) == 1 and num_scales > 1: compression_ratio = [compression_ratio[0]] * (num_scales - 1) assert all([ compression_ratio[s] >= 0.0 and compression_ratio[s] < 1.0 for s in range(num_scales - 1) ]) # initialize context. Only upsample context in ContextInit if latent shape doesn't change during the flow. context_init = ContextInit(num_bits=num_bits, in_channels=cond_shape[0], out_channels=lowres_encoder_channels, mid_channels=lowres_encoder_channels, num_blocks=lowres_encoder_blocks, depth=lowres_encoder_depth, dropout=coupling_dropout) transforms = [] current_shape = data_shape if dequant == 'uniform': transforms.append(UniformDequantization(num_bits=num_bits)) elif dequant == 'flow': dequantize_flow = DequantizationFlow( data_shape=data_shape, num_bits=num_bits, num_steps=dequant_steps, coupling_network=coupling_network, num_context=dequant_context, num_blocks=dequant_blocks, mid_channels=coupling_channels, depth=coupling_depth, dropout=0.0, gated_conv=False, num_mixtures=coupling_mixtures, checkerboard=True, tuple_flip=tuple_flip) transforms.append( VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits)) # Change range from [0,1]^D to [-0.5, 0.5]^D transforms.append(ScalarAffineBijection(shift=-0.5)) # Initial squeezing if current_shape[1] >= 128 and current_shape[2] >= 128: # H x W -> 64 x 64 transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) if current_shape[1] >= 64 and current_shape[2] >= 64: # H x W -> 32 x 32 transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) if 0 not in checkerboard_scales or (current_shape[1] > 32 and current_shape[2] > 32): # Only go to 16 x 16 if not doing checkerboard splits first transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) # add in augmentation channels if desired if augment_size is not None and augment_size > 0: #transforms.append(Augment(StandardUniform((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0])) #transforms.append(Augment(StandardNormal((augment_size, current_shape[1], current_shape[2])), x_size=current_shape[0])) augment_flow = AugmentFlow(data_shape=current_shape, augment_size=augment_size, num_steps=augment_steps, coupling_network=coupling_network, mid_channels=coupling_channels, num_context=augment_context, num_mixtures=coupling_mixtures, num_blocks=augment_blocks, dropout=0.0, checkerboard=True, tuple_flip=tuple_flip) transforms.append( Augment(encoder=augment_flow, x_size=current_shape[0])) current_shape = (current_shape[0] + augment_size, current_shape[1], current_shape[2]) for scale in range(num_scales): # First and Third scales use checkerboard split pattern checkerboard = scale in checkerboard_scales context_out_channels = min(current_shape[0], coupling_channels) context_out_shape = (context_out_channels, current_shape[1], current_shape[2] // 2) if checkerboard else (context_out_channels, current_shape[1], current_shape[2]) # reshape the context to the current size for all flow steps at this scale context_upsampler_net = UpsamplerNet( in_channels=lowres_encoder_channels, out_shape=context_out_shape, mid_channels=lowres_upsampler_channels) transforms.append( ContextUpsampler(context_net=context_upsampler_net, direction='forward')) for step in range(num_steps): flip = (step % 2 == 0) if tuple_flip else False if len(conditional_channels) == 0: if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) transforms.append(Conv1x1(current_shape[0])) else: if actnorm: transforms.append( ConditionalActNormBijection2d( cond_shape=current_shape, out_channels=current_shape[0], mid_channels=conditional_channels)) transforms.append( ConditionalConv1x1(cond_shape=current_shape, out_channels=current_shape[0], mid_channels=conditional_channels, slogdet_cpu=True)) if coupling_network in ["conv", "densenet"]: transforms.append( SRCoupling(x_size=context_out_shape, y_size=current_shape, mid_channels=coupling_channels, depth=coupling_depth, num_blocks=coupling_blocks, dropout=coupling_dropout, gated_conv=coupling_gated_conv, coupling_network=coupling_network, checkerboard=checkerboard, flip=flip)) elif coupling_network == "transformer": transforms.append( SRMixtureCoupling(x_size=context_out_shape, y_size=current_shape, mid_channels=coupling_channels, dropout=coupling_dropout, num_blocks=coupling_blocks, num_mixtures=coupling_mixtures, checkerboard=checkerboard, flip=flip)) # Upsample context (for the previous flows, only if moving in the inverse direction) transforms.append( ContextUpsampler(context_net=context_upsampler_net, direction='inverse')) if scale < num_scales - 1: if pooling == 'none' or compression_ratio[scale] == 0.0: # fully bijective flow with multi-scale architecture transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) elif pooling == 'slice': # slice some of the dimensions (channel-wise) out from further flow steps unsliced_channels = int( max( 1, 4 * current_shape[0] * (1.0 - compression_ratio[scale]))) sliced_channels = int(4 * current_shape[0] - unsliced_channels) noise_shape = (sliced_channels, current_shape[1] // 2, current_shape[2] // 2) transforms.append(Squeeze2d()) transforms.append( Slice(StandardNormal(noise_shape), num_keep=unsliced_channels, dim=1)) current_shape = (unsliced_channels, current_shape[1] // 2, current_shape[2] // 2) elif pooling == 'max': # max pooling to compress dimensions spatially, h//2 and w//2 noise_shape = (current_shape[0] * 3, current_shape[1] // 2, current_shape[2] // 2) decoder = StandardHalfNormal(noise_shape) transforms.append( SimpleMaxPoolSurjection2d(decoder=decoder)) current_shape = (current_shape[0], current_shape[1] // 2, current_shape[2] // 2) elif pooling == "mvae": # Compressive flow: reduce the dimensionality of data by 2 (channel-wise) compressed_channels = max( 1, int(current_shape[0] * (1.0 - compression_ratio[scale]))) latent_size = compressed_channels * current_shape[ 1] * current_shape[2] vae_channels = [ current_shape[0] * 2, current_shape[0] * 4, current_shape[0] * 8 ] encoder = ConditionalNormal(ConvEncoderNet( in_channels=current_shape[0], out_channels=latent_size, mid_channels=vae_channels, max_pool=True, batch_norm=True), split_dim=1) decoder = ConditionalNormal(ConvDecoderNet( in_channels=latent_size, out_shape=(current_shape[0] * 2, current_shape[1], current_shape[2]), mid_channels=list(reversed(vae_channels)), batch_norm=True, in_lambda=lambda x: x.view(x.shape[0], x.shape[1], 1, 1 )), split_dim=1) transforms.append(VAE(encoder=encoder, decoder=decoder)) transforms.append( Reshape(input_shape=(latent_size, ), output_shape=(compressed_channels, current_shape[1], current_shape[2]))) # after reducing channels with mvae, squeeze to reshape latent space before another sequence of flows transforms.append(Squeeze2d()) current_shape = ( compressed_channels * 4, # current_shape[0] * 4 current_shape[1] // 2, current_shape[2] // 2) else: raise ValueError( "pooling argument must be either mvae, slice, max, or none" ) else: if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) # for reference save the shape output by the bijective flow self.latent_size = current_shape[0] * current_shape[1] * current_shape[ 2] self.flow_shape = current_shape super(SRPoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape), transforms=transforms, context_init=context_init)
def __init__(self, data_shape, num_bits, base_distributions, num_scales, num_steps, actnorm, vae_hidden_units, latent_size, vae_activation, coupling_network, dequant, dequant_steps, dequant_context, coupling_blocks, coupling_channels, coupling_dropout, coupling_growth=None, coupling_gated_conv=None, coupling_depth=None, coupling_mixtures=None): transforms = [] current_shape = data_shape if num_steps == 0: num_scales = 0 if dequant == 'uniform' or num_steps == 0 or num_scales == 0: # no bijective flows defaults to only using uniform dequantization transforms.append(UniformDequantization(num_bits=num_bits)) elif dequant == 'flow': dequantize_flow = DequantizationFlow( data_shape=data_shape, num_bits=num_bits, num_steps=dequant_steps, coupling_network=coupling_network, num_context=dequant_context, num_blocks=coupling_blocks, mid_channels=coupling_channels, depth=coupling_depth, growth=coupling_growth, dropout=coupling_dropout, gated_conv=coupling_gated_conv, num_mixtures=coupling_mixtures) transforms.append( VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits)) # Change range from [0,1]^D to [-0.5, 0.5]^D transforms.append(ScalarAffineBijection(shift=-0.5)) # Initial squeeze transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) # Dimension preserving flows for scale in range(num_scales): for step in range(num_steps): if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) transforms.append(Conv1x1(current_shape[0])) if coupling_network in ["conv", "densenet"]: transforms.append( Coupling(in_channels=current_shape[0], num_blocks=coupling_blocks, mid_channels=coupling_channels, depth=coupling_depth, growth=coupling_growth, dropout=coupling_dropout, gated_conv=coupling_gated_conv, coupling_network=coupling_network)) else: transforms.append( MixtureCoupling(in_channels=current_shape[0], mid_channels=coupling_channels, num_mixtures=coupling_mixtures, num_blocks=coupling_blocks, dropout=coupling_dropout)) if scale < num_scales - 1: transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) else: if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) # Base distribution for dimension preserving portion of flow if len(base_distributions) > 1: if base_distributions[0] == "n": base0 = StandardNormal(current_shape) elif base_distributions[0] == "c": base0 = ConvNormal2d(current_shape) elif base_distributions[0] == "u": base0 = StandardUniform(current_shape) else: raise ValueError( "Base distribution must be one of n=Noraml, u=Uniform, or c=ConvNormal" ) else: base0 = None # for reference save the shape output by the bijective flow self.flow_shape = current_shape # Non-dimension preserving flows flat_dim = current_shape[0] * current_shape[1] * current_shape[2] encoder = ConditionalNormal( MLP(flat_dim, 2 * latent_size, hidden_units=vae_hidden_units, activation=vae_activation, in_lambda=lambda x: x.view(x.shape[0], flat_dim))) decoder = ConditionalNormal(MLP( latent_size, 2 * flat_dim, hidden_units=list(reversed(vae_hidden_units)), activation=vae_activation, out_lambda=lambda x: x.view(x.shape[0], current_shape[0] * 2, current_shape[1], current_shape[2])), split_dim=1) transforms.append(VAE(encoder=encoder, decoder=decoder)) # Base distribution for non-dimension preserving portion of flow #self.latent_size = latent_size if base_distributions[-1] == "n": base1 = StandardNormal((latent_size, )) elif base_distributions[-1] == "c": base1 = ConvNormal2d((latent_size, )) elif base_distributions[-1] == "u": base1 = StandardUniform((latent_size, )) else: raise ValueError( "Base distribution must be one of n=Noraml, u=Uniform, or c=ConvNormal" ) super(VAECompressiveFlow, self).__init__(base_dist=[base0, base1], transforms=transforms)
def net(in_channels): return nn.Sequential( TransformerNet(in_channels // 2, mid_channels=16, num_blocks=2, num_mixtures=k, dropout=0.2), ElementwiseParams2d(2 + k * 3)) #model = Flow(base_dist=StandardNormal((16,7,7)), model = Flow( base_dist=ConvNormal2d((16, 7, 7)), transforms=[ UniformDequantization(num_bits=8), #Logit(), ScalarAffineBijection(shift=-0.5), Squeeze2d(), ActNormBijection2d(4), Conv1x1(4), LogisticMixtureAffineCouplingBijection(net(4), num_mixtures=k, scale_fn=scale_fn("tanh_exp")), ActNormBijection2d(4), Conv1x1(4), LogisticMixtureAffineCouplingBijection(net(4), num_mixtures=k, scale_fn=scale_fn("tanh_exp")), Squeeze2d(), ActNormBijection2d(16), Conv1x1(16), LogisticMixtureAffineCouplingBijection(net(16),
def __init__(self, data_shape, num_bits, num_scales, num_steps, actnorm, pooling, dequant, dequant_steps, dequant_context, densenet_blocks, densenet_channels, densenet_depth, densenet_growth, dropout, gated_conv): transforms = [] current_shape = data_shape if dequant == 'uniform': transforms.append(UniformDequantization(num_bits=num_bits)) elif dequant == 'flow': dequantize_flow = DequantizationFlow( data_shape=data_shape, num_bits=num_bits, num_steps=dequant_steps, num_context=dequant_context, num_blocks=densenet_blocks, mid_channels=densenet_channels, depth=densenet_depth, growth=densenet_growth, dropout=dropout, gated_conv=gated_conv) transforms.append( VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits)) # Change range from [0,1]^D to [-0.5, 0.5]^D transforms.append(ScalarAffineBijection(shift=-0.5)) # Initial squeeze transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) # Pooling flows for scale in range(num_scales): for step in range(num_steps): if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) transforms.extend([ Conv1x1(current_shape[0]), Coupling(in_channels=current_shape[0], num_blocks=densenet_blocks, mid_channels=densenet_channels, depth=densenet_depth, growth=densenet_growth, dropout=dropout, gated_conv=gated_conv) ]) if scale < num_scales - 1: noise_shape = (current_shape[0] * 3, current_shape[1] // 2, current_shape[2] // 2) if pooling == 'none': transforms.append(Squeeze2d()) transforms.append( Slice(StandardNormal(noise_shape), num_keep=current_shape[0], dim=1)) elif pooling == 'max': decoder = StandardHalfNormal(noise_shape) transforms.append( SimpleMaxPoolSurjection2d(decoder=decoder)) current_shape = (current_shape[0], current_shape[1] // 2, current_shape[2] // 2) else: if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) super(PoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape), transforms=transforms)
def __init__(self, data_shape, num_bits, num_scales, num_steps, actnorm, pooling, compression_ratio, coupling_network, coupling_blocks, coupling_channels, coupling_dropout=0.0, coupling_gated_conv=None, coupling_depth=None, coupling_mixtures=None, dequant="flow", dequant_steps=4, dequant_context=32, dequant_blocks=2, augment_steps=4, augment_context=32, augment_blocks=2, augment_size=None, checkerboard_scales=[], tuple_flip=True): if len(compression_ratio) == 1 and num_scales > 1: compression_ratio = [compression_ratio[0]] * (num_scales - 1) assert all([ compression_ratio[s] >= 0 and compression_ratio[s] < 1 for s in range(num_scales - 1) ]) transforms = [] current_shape = data_shape if dequant == 'uniform': transforms.append(UniformDequantization(num_bits=num_bits)) elif dequant == 'flow': dequantize_flow = DequantizationFlow( data_shape=data_shape, num_bits=num_bits, num_steps=dequant_steps, coupling_network=coupling_network, num_context=dequant_context, num_blocks=dequant_blocks, mid_channels=coupling_channels, depth=coupling_depth, dropout=0.0, gated_conv=False, num_mixtures=coupling_mixtures, checkerboard=True, tuple_flip=tuple_flip) transforms.append( VariationalDequantization(encoder=dequantize_flow, num_bits=num_bits)) # Change range from [0,1]^D to [-0.5, 0.5]^D transforms.append(ScalarAffineBijection(shift=-0.5)) # Initial squeezing if current_shape[1] >= 128 and current_shape[2] >= 128: # H x W -> 64 x 64 transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) if current_shape[1] >= 64 and current_shape[2] >= 64: # H x W -> 32 x 32 transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) if 0 not in checkerboard_scales or (current_shape[1] > 32 and current_shape[2] > 32): # Only go to 16 x 16 if not doing checkerboard splits first transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) # add in augmentation channels if desired if augment_size is not None and augment_size > 0: augment_flow = AugmentFlow(data_shape=current_shape, augment_size=augment_size, num_steps=augment_steps, coupling_network=coupling_network, mid_channels=coupling_channels, num_context=augment_context, num_mixtures=coupling_mixtures, num_blocks=augment_blocks, dropout=0.0, checkerboard=True, tuple_flip=tuple_flip) transforms.append( Augment(encoder=augment_flow, x_size=current_shape[0])) current_shape = (current_shape[0] + augment_size, current_shape[1], current_shape[2]) for scale in range(num_scales): checkerboard = scale in checkerboard_scales for step in range(num_steps): flip = (step % 2 == 0) if tuple_flip else False if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) transforms.append(Conv1x1(current_shape[0])) if coupling_network == "conv": transforms.append( Coupling(in_channels=current_shape[0], num_blocks=coupling_blocks, mid_channels=coupling_channels, depth=coupling_depth, dropout=coupling_dropout, gated_conv=coupling_gated_conv, coupling_network=coupling_network, checkerboard=checkerboard, flip=flip)) else: transforms.append( MixtureCoupling(in_channels=current_shape[0], mid_channels=coupling_channels, num_mixtures=coupling_mixtures, num_blocks=coupling_blocks, dropout=coupling_dropout, checkerboard=checkerboard, flip=flip)) if scale < num_scales - 1: if pooling in ['bijective', 'none' ] or compression_ratio[scale] == 0.0: transforms.append(Squeeze2d()) current_shape = (current_shape[0] * 4, current_shape[1] // 2, current_shape[2] // 2) elif pooling == 'slice': # slice some of the dimensions (channel-wise) out from further flow steps unsliced_channels = int( max(1, 4 * current_shape[0] * (1.0 - sliced_ratio[scale]))) sliced_channels = int(4 * current_shape[0] - unsliced_channels) noise_shape = (sliced_channels, current_shape[1] // 2, current_shape[2] // 2) transforms.append(Squeeze2d()) transforms.append( Slice(StandardNormal(noise_shape), num_keep=unsliced_channels, dim=1)) current_shape = (unsliced_channels, current_shape[1] // 2, current_shape[2] // 2) elif pooling == 'max': noise_shape = (current_shape[0] * 3, current_shape[1] // 2, current_shape[2] // 2) decoder = StandardHalfNormal(noise_shape) transforms.append( SimpleMaxPoolSurjection2d(decoder=decoder)) current_shape = (current_shape[0], current_shape[1] // 2, current_shape[2] // 2) else: raise ValueError( f"Pooling argument must be either slice, max or none, not: {pooling}" ) else: if actnorm: transforms.append(ActNormBijection2d(current_shape[0])) # for reference save the shape output by the bijective flow self.flow_shape = current_shape self.latent_size = current_shape[0] * current_shape[1] * current_shape[ 2] super(PoolFlow, self).__init__(base_dist=ConvNormal2d(current_shape), transforms=transforms)