Exemple #1
0
 def svm_process(self,theList) :
     # SVM process
     np.set_printoptions(threshold=np.NaN)
     datas, labels = self.loadData(theList) #dalam datas yang berbentuk list ada dict
     print("sebelum normalisasi")
     #win.textbox.insertPlainText("sebelum normalisasi")
     #win.add_table_data(datas)
     #desktop2.add_text(desktop.window,"jancokqq")
     datas = svm.normalize(datas,win.normType.currentText())
     print("setelah normalisasi")
     #win.add_table_data2(datas)
     list_temp=list()
     for i in datas:
         sublist=list()
         for key in i :
             sublist.append(i[key])
         list_temp.append(sublist)
     datas=mat(list_temp)
     m, n = shape(datas)
     kernel= mat(zeros((m,m)))
     print("size=",m)
     for i in range(m) :
         kernel[:,i] = svm.kernelTrans(datas, datas[i, :],kTup={'type': win.kernelType.currentText(), 'gamma': win.paramGamma.value(),'degree': win.paramDegree.value()\
                                                                           ,'coef' :win.paramCoef.value()})
         #print("kernel=",kernel)
     b, alphas = svm.smoSimple(kernel, labels, win.paramC.value(), win.paramTolerance.value(), win.paramIterate.value())
     # print('alphas')
     # print(alphas)
     # print('b')
     # print(b)
     return b, alphas
Exemple #2
0
    def eval(self,alphas,b,datas,training) :

        dataTrain,labelTrain = self.loadData(training)
        dataTrain = svm.normalize(dataTrain,win.normType.currentText())
        dataEval, labelEval = self.loadData(datas)
        dataEval = svm.normalize(dataEval,win.normType.currentText())
        dataTrain=mat(self._dictToList(dataTrain))
        dataEval=mat(self._dictToList(dataEval))
        #dataEval = mat(dataEval)
        m, n = shape(dataEval)
        labelTrain = mat(labelTrain).transpose()
        panjang = list() #simpan data buat f-score
        errorCount = 0
        for i in range (m) :
            kernelEval = svm.kernelTrans(dataTrain, dataEval[i, :], kTup={'type': win.kernelType.currentText(), 'gamma': win.paramGamma.value(),'degree': win.paramDegree.value()\
                                                                              ,'coef' :win.paramCoef.value()})
            predict = kernelEval.T * multiply(labelTrain, alphas) + b
            panjang.append(float(sign(predict)))
            #print("panjang=",predict)
            if sign(predict) != sign(labelEval[i]): errorCount += 1

        print("the error rate is: %f" % (float(+errorCount) / m))
        print("labelArr", labelEval)
        print("panjang", panjang)
        f1_positive = f1_score(labelEval, panjang,pos_label=1)
        f1_negative = f1_score(labelEval, panjang, pos_label=-1)
        print("the f1_score is :", (f1_positive + f1_negative) / 2)
        win.label_fscore.setText("f-score :"+str((f1_positive + f1_negative) / 2))
Exemple #3
0
def testPrc(kTup=('rbf', 10)):
    dataArr, labelArr = loadDataSet('201404')
    print 'load data done'
    b, alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat = mat(dataArr);
    labelMat = mat(labelArr).transpose()
    svInd = nonzero(alphas.A > 0)[0]
    sVs = datMat[svInd]
    labelSV = labelMat[svInd];
    print "there are %d Support Vectors" % shape(sVs)[0]
    saveSVM(svInd, sVs, labelSV, alphas[svInd])  #保存支持向量
    m, n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs, datMat[i, :], kTup)
        predict = kernelEval.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelArr[i]): errorCount += 1
    print "the training error rate is: %f" % (float(errorCount) / m)
def handwritingIndentify(kTup):
    featureList,labelList = loadImage('digits/trainingDigits')
    print featureList
    print labelList
    b, alphas = svm.smoP(array(featureList),labelList,200,0.0001,10000,kTup)
    print "b:",b, "alpha:",alphas
    svInd = nonzero(alphas.A > 0)[0]
    sVs = mat(array(featureList))[svInd]
    labelSV= mat(labelList).T[svInd]
    print "there a %s Support Vectors."%shape(sVs)[0]
    featureMat = mat(array(featureList));labelMat = mat(labelList).T
    m,n = shape(featureMat)
    errorCount = 0
    for i in range(m):
        kernelMat = svm.kernelTrans(sVs, featureMat[i,:], kTup)
        predict = kernelMat.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict) != sign(labelMat[i]):
            errorCount += 1
    print "the training data error rate is %s"%(float(errorCount)/m)
Exemple #5
0
def handwritingIndentify(kTup):
    featureList, labelList = loadImage('digits/trainingDigits')
    print featureList
    print labelList
    b, alphas = svm.smoP(array(featureList), labelList, 200, 0.0001, 10000,
                         kTup)
    print "b:", b, "alpha:", alphas
    svInd = nonzero(alphas.A > 0)[0]
    sVs = mat(array(featureList))[svInd]
    labelSV = mat(labelList).T[svInd]
    print "there a %s Support Vectors." % shape(sVs)[0]
    featureMat = mat(array(featureList))
    labelMat = mat(labelList).T
    m, n = shape(featureMat)
    errorCount = 0
    for i in range(m):
        kernelMat = svm.kernelTrans(sVs, featureMat[i, :], kTup)
        predict = kernelMat.T * multiply(labelSV, alphas[svInd]) + b
        if sign(predict) != sign(labelMat[i]):
            errorCount += 1
    print "the training data error rate is %s" % (float(errorCount) / m)
Exemple #6
0
file = "C:\\Users\\Daniel\\PycharmProjects\\Spotiwew\\Sandro Yusuf Sihaloho\\main.csv"
csvReader = csv.DictReader(open(file))
thelist = list()
for i in csvReader:
    thelist.append(i)
datas, labels = loadData(
    thelist
)  #dalam datas yang berbentuk list ada dict. disini memisahkan data dan label
#print(thelist)
list_temp = list()
for i in datas:
    sublist = list()
    for key in i:
        sublist.append(i[key])  # get value of the key
    list_temp.append(sublist)  # add to list
datas = mat(list_temp)
m, n = shape(datas)
kernel = mat(zeros((m, m)))
print("size=", m)
for i in range(m):
    kernel[:, i] = svm.kernelTrans(datas,
                                   datas[i, :],
                                   kTup={
                                       'type': "laplacian",
                                       'gamma': 0.5
                                   })
    # print("kernel=",kernel)
b, alphas = svm.smoSimple(kernel, labels, C=10, toler=0.1, maxIter=2)
print(b)
print(alphas)
Exemple #7
0
    def recommend(self) :
        with open("resultSVM.txt", "rb") as fp:
            alphas, b, training = pickle.load(fp)
        connect.set_headers(win.labelbox.text())
        song=list()
        with open("listPositive.txt", "rb") as fp:
            listPositive= pickle.load(fp)
        print("listPositive=",listPositive)
        listPositiveNew = list()
        if len(listPositive)>200 : #biar tidak tlalu banyak request]
            listPositive=self.random_del(listPositive,200)
        print("listnew=", len(listPositive))

        if connect.get_display_name() != None:
            mypath = str(connect.get_display_name())
        else:
            mypath = str(connect.get_current_user())
        for i in listPositive :
            tempJson=connect.recommendation_based_seeds(i)
            for j in tempJson['tracks'] :
                song.append(j['id'])
        if not os.path.exists(mypath+"/recommendations.csv"):
            print("cari rekomendasi")
            headers = ['id', 'danceability', 'energy', 'loudness', 'speechiness', 'acousticness', 'instrumentalness', 'valence',
                   'tempo']
            self.create_csv("recommendations.csv",mypath,headers)
            mypath = mypath+"/recommendations.csv"
            print(mypath)
            self.get_audio_features(song,mypath) #skaligus write to csv
        else :
            mypath = mypath + "/recommendations.csv"
        recomTrain, labelTrain = self.loadData(training)
        # win.add_table_data(dataTrain)
        recomTrain = svm.normalize(recomTrain, win.normType.currentText())
        templist=list()
        for i in recomTrain :
            sublist=list()
            for key in i :
                sublist.append(i[key])
            templist.append(sublist)
        recomTrain=templist
        print("dataTrain=", shape(mat(recomTrain)))
        print(recomTrain)
        # win.add_table_data2(dataTrain)
        # win.addAlphasItem(alphas)
        # win.label_alphas.setText("alphas size :" + str(len(alphas)))
        # win.label_bias.setText("Bias :"+str(b))

        csvReader = csv.DictReader(open(mypath))
        RecoCSV=list()
        print(csvReader)
        for i in csvReader :
            RecoCSV.append(i)
        dataReco, id_lagu = self.loadData(RecoCSV)  # simpan id lagu bukan label
        print("datareco=",dataReco)
        dataReco = svm.normalize(dataReco, win.normType.currentText())
        print("datareconorm=", dataReco)
        templist2=list()
        for j in dataReco :
            sublist2=list()
            for key2 in j :
                sublist2.append(j[key2])
            #print("sublist2=",sublist2)
            templist2.append(sublist2)
        dataReco=templist2
        print(dataReco)
        recomTrain = mat(recomTrain)
        print(recomTrain)
        #win.add_table_dataRecom(dataReco)
        dataReco = mat(dataReco)
        m, n = shape(dataReco)
        labelTrain = mat(labelTrain).transpose()

        print('udah mo abis bgst')
        print(id_lagu)
        listPredict=list()
        print("komall", shape(recomTrain))
        print(shape(dataReco))
        print(shape(labelTrain))
        print(shape(alphas))
        print("datareco=",dataReco)
        print("dataTrain=", recomTrain)

        for i in range(m):
            if (id_lagu[i] in listPredict)==False:
                kernelEval = svm.kernelTrans(recomTrain, dataReco[i, :],
                                             kTup={'type': win.kernelType.currentText(), 'gamma': win.paramGamma.value(),
                                                   'degree': win.paramDegree.value(), 'coef': win.paramCoef.value()})

                predict = kernelEval.T * multiply(labelTrain, alphas) + b
                temp = {'id' : id_lagu[i],"value":predict }
                if temp not in listPredict :
                    listPredict.append(temp)
        print("list predict=",listPredict)
        print("list predict=", type(listPredict))
        seen=set()
        newListPredict=list()
        # for d in list(listPredict) : #in here we delete the dict with same
        #     t=tuple(d.items())
        #     if t not in seen :
        #         seen.add(t)
        #         newListPredict.append(t)
        # listPredict=newListPredict
        listPredict.sort(key=itemgetter('value'),reverse=True)
        print("listPredict=",listPredict)
        # listRecomm = list()
        # count=0
        # while len(listRecomm) < 10:
        #     temp_l.append(listPredict[count])
        #     count+=1
        listTemp=listPredict[:10]
        listRecomm=list()
        for i in listTemp :
            listRecomm.append(i['id'])
        recom_song = self.__list_to_str(listRecomm)
        print(recom_song)
        result = connect.get_several_tracks(recom_song)
        self.get_song_name(result)