def combtn_fun(self):

        dataset = ["50-50", "70-30", "80-20"]

        svm = []
        bp = []
        gsa = []

        plot = []
        x = [50, 70, 80]

        for i in dataset:

            acc1, sens1, cm1 = svm_breastdev.predict(dataset=i)
            acc2, sens2, cm2 = bp_breastdev.predict(dataset=i)
            acc, fet_sub = gsadev.predict(dataset=i)

            svm.append(acc1)
            bp.append(acc2)
            gsa.append(acc)

        plt.plot(x, svm, label="SVM")
        plt.plot(x, bp, label="BP")
        plt.plot(x, gsa, label="GSA")

        plt.xlabel("Training Set (%)")
        plt.ylabel("Accuracy")
        plt.title("Algorithm Comparision")
        plt.legend()

        plt.legend(bbox_to_anchor=(1.05, 1), loc=1, borderaxespad=0.)

        plt.show()
    def combtn1_fun(self):

        ker = ["rbf", "poly", "sigmoid"]

        dataset = ["50-50", "70-30", "80-20"]

        C = str(self.le_c.text())

        gamma = str(self.le_gamma.text())

        c_float = eval(C)

        gamma_float = eval(gamma)

        plot = []
        x = [50, 70, 80]

        for i in ker:
            v = []

            for j in dataset:

                acc, sens, cm = svm_breastdev.predict(i, j, c_float,
                                                      gamma_float)
                v.append(acc)

            plot.append(v)

        a = 0

        #print plot

        for i in plot:

            plt.plot(x, i, label=ker[a])

            a += 1

        plt.xlabel("Training Set (%)")
        plt.ylabel("Accuracy")
        plt.title("Kernel Comparision")
        plt.legend()

        plt.legend(bbox_to_anchor=(1.05, 1), loc=1, borderaxespad=0.)

        plt.show()
    def crbtn1_fun(self):

        kernel = str(self.cb1.currentText())
        print "kernel ", kernel

        dataset = str(self.cb2.currentText())
        print "dataset ", dataset

        C = str(self.le_c.text())
        print "C ", C

        gamma = str(self.le_gamma.text())
        print "gamma ", gamma

        c_float = eval(C)

        gamma_float = eval(gamma)

        print c_float, gamma_float

        acc, sens, cm = svm_breastdev.predict(kernel, dataset, c_float,
                                              gamma_float)

        self.res1.append("Confusion Matrix:")

        self.res1.append("\t\tBenign\tMalignant")

        self.res1.append("Benign\t\t" + str(cm[0][0]) + "\t" + str(cm[0][1]))

        self.res1.append("Malignant\t\t" + str(cm[1][0]) + "\t" +
                         str(cm[1][1]))

        self.res1.append("\nAccuracy : " + str(round(acc * 100, 2)) + "%")

        self.res1.append("\nSenstivity :\n" + "Benign: " +
                         str(round(sens[0] * 100, 2)) + "%")

        self.res1.append("Malignant: " + str(round(sens[1] * 100, 2)) + "%\n")

        plot.predict(kernel, dataset, c_float, gamma_float)