def predict_probability(self, x): # c code will do nothing on wrong type, so we have to check ourself if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR: raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression" elif self.svm_type == ONE_CLASS: raise TypeError, "probability not supported yet for one-class problem" # only C_SVC,NU_SVC goes in if not self.probability: raise TypeError, "model does not support probabiliy estimates" # convert x into svm_node, alloc a double array to receive probabilities data = _convert_to_svm_node_array(x) dblarr = svmc.new_double(self.nr_class) pred = svmc.svm_predict_probability(self.model, data, dblarr) pv = _double_array_to_list(dblarr, self.nr_class) svmc.delete_double(dblarr) svmc.svm_node_array_destroy(data) p = {} for i in range(len(self.labels)): p[self.labels[i]] = pv[i] return pred, p
def predict_probability(self,x): #c code will do nothing on wrong type, so we have to check ourself if self.svm_type == NU_SVR or self.svm_type == EPSILON_SVR: raise TypeError, "call get_svr_probability or get_svr_pdf for probability output of regression" elif self.svm_type == ONE_CLASS: raise TypeError, "probability not supported yet for one-class problem" #only C_SVC,NU_SVC goes in if not self.probability: raise TypeError, "model does not support probabiliy estimates" #convert x into svm_node, alloc a double array to receive probabilities data = _convert_to_svm_node_array(x) dblarr = svmc.new_double(self.nr_class) pred = svmc.svm_predict_probability(self.model, data, dblarr) pv = _double_array_to_list(dblarr, self.nr_class) svmc.delete_double(dblarr) svmc.svm_node_array_destroy(data) p = {} for i in range(len(self.labels)): p[self.labels[i]] = pv[i] return pred, p