Exemple #1
0
    def _convert_kg2_edge_to_swagger_edge(self, neo4j_edge):
        swagger_edge = Edge()
        swagger_edge.type = neo4j_edge.get('simplified_edge_label')
        swagger_edge.source_id = neo4j_edge.get('subject')
        swagger_edge.target_id = neo4j_edge.get('object')
        swagger_edge.id = self._create_edge_id(swagger_edge)
        swagger_edge.relation = neo4j_edge.get('relation')
        swagger_edge.publications = ast.literal_eval(
            neo4j_edge.get('publications'))
        swagger_edge.provided_by = self._convert_strange_provided_by_field_to_list(
            neo4j_edge.get('provided_by')
        )  # Temporary hack until provided_by is fixed in KG2
        swagger_edge.negated = ast.literal_eval(neo4j_edge.get('negated'))
        swagger_edge.is_defined_by = "ARAX/KG2"
        swagger_edge.edge_attributes = []

        # Add additional properties on KG2 edges as swagger EdgeAttribute objects
        # TODO: fix issues coming from strange characters in 'publications_info'! (EOF error)
        additional_kg2_edge_properties = [
            'relation_curie', 'simplified_relation_curie',
            'simplified_relation', 'edge_label'
        ]
        edge_attributes = self._create_swagger_attributes(
            "edge", additional_kg2_edge_properties, neo4j_edge)
        swagger_edge.edge_attributes += edge_attributes

        return swagger_edge
Exemple #2
0
    def _convert_kg1_edge_to_swagger_edge(self, neo4j_edge: Dict[str, any], node_uuid_to_curie_dict: Dict[str, str]) -> Edge:
        swagger_edge = Edge()
        swagger_edge.type = neo4j_edge.get("predicate")
        swagger_edge.source_id = node_uuid_to_curie_dict[neo4j_edge.get("source_node_uuid")]
        swagger_edge.target_id = node_uuid_to_curie_dict[neo4j_edge.get("target_node_uuid")]
        swagger_edge.id = f"KG1:{neo4j_edge.get('id')}"
        swagger_edge.relation = neo4j_edge.get("relation")
        swagger_edge.provided_by = neo4j_edge.get("provided_by")
        swagger_edge.is_defined_by = "ARAX/KG1"

        if neo4j_edge.get("probability"):
            swagger_edge.edge_attributes = self._create_swagger_attributes("edge", ["probability"], neo4j_edge)
        return swagger_edge
Exemple #3
0
 def _create_ngd_edge(self, ngd_value: float, source_id: str,
                      target_id: str) -> Edge:
     ngd_edge = Edge()
     ngd_edge.type = self.ngd_edge_type
     ngd_edge.source_id = source_id
     ngd_edge.target_id = target_id
     ngd_edge.id = f"NGD:{source_id}--{ngd_edge.type}--{target_id}"
     ngd_edge.provided_by = "ARAX"
     ngd_edge.is_defined_by = "ARAX"
     ngd_edge.edge_attributes = [
         EdgeAttribute(name=self.ngd_edge_attribute_name,
                       type=self.ngd_edge_attribute_type,
                       value=ngd_value,
                       url=self.ngd_edge_attribute_url)
     ]
     return ngd_edge
Exemple #4
0
    def _convert_kg1_edge_to_swagger_edge(self, neo4j_edge,
                                          node_uuid_to_curie_dict):
        swagger_edge = Edge()
        swagger_edge.type = neo4j_edge.get('predicate')
        swagger_edge.source_id = node_uuid_to_curie_dict[neo4j_edge.get(
            'source_node_uuid')]
        swagger_edge.target_id = node_uuid_to_curie_dict[neo4j_edge.get(
            'target_node_uuid')]
        swagger_edge.id = self._create_edge_id(swagger_edge)
        swagger_edge.relation = neo4j_edge.get('relation')
        swagger_edge.provided_by = neo4j_edge.get('provided_by')
        swagger_edge.is_defined_by = "ARAX/KG1"

        if neo4j_edge.get('probability'):
            swagger_edge.edge_attributes = self._create_swagger_attributes(
                "edge", ['probability'], neo4j_edge)
        return swagger_edge
Exemple #5
0
    def _convert_kg2_edge_to_swagger_edge(self, neo4j_edge: Dict[str, any]) -> Edge:
        swagger_edge = Edge()
        swagger_edge.id = f"KG2:{neo4j_edge.get('id')}"
        swagger_edge.type = neo4j_edge.get("simplified_edge_label")
        swagger_edge.source_id = neo4j_edge.get("subject")
        swagger_edge.target_id = neo4j_edge.get("object")
        swagger_edge.relation = neo4j_edge.get("relation")
        swagger_edge.publications = ast.literal_eval(neo4j_edge.get("publications"))
        swagger_edge.provided_by = self._convert_strange_provided_by_field_to_list(neo4j_edge.get("provided_by"))  # Temporary hack until provided_by is fixed in KG2
        swagger_edge.negated = ast.literal_eval(neo4j_edge.get("negated"))
        swagger_edge.is_defined_by = "ARAX/KG2"
        swagger_edge.edge_attributes = []

        # Add additional properties on KG2 edges as swagger EdgeAttribute objects
        # TODO: fix issues coming from strange characters in 'publications_info'! (EOF error)
        additional_kg2_edge_properties = ["relation_curie", "simplified_relation_curie", "simplified_relation",
                                          "edge_label"]
        edge_attributes = self._create_swagger_attributes("edge", additional_kg2_edge_properties, neo4j_edge)
        swagger_edge.edge_attributes += edge_attributes

        return swagger_edge
Exemple #6
0
    def predict_drug_treats_disease(self):
        """
        Iterate over all the edges in the knowledge graph, add the drug-disease treatment probability for appropriate edges
        on the edge_attributes
        :return: response
        """
        parameters = self.parameters
        self.response.debug(f"Computing drug disease treatment probability based on a machine learning model")
        self.response.info(f"Computing drug disease treatment probability based on a machine learning model: See [this publication](https://doi.org/10.1101/765305) for more details about how this is accomplished.")

        attribute_name = "probability_treats"
        attribute_type = "EDAM:data_0951"
        value = 0  # this will be the default value. If the model returns 0, or the default is there, don't include that edge
        url = "https://doi.org/10.1101/765305"

        # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them
        if 'virtual_relation_label' in parameters:
            source_curies_to_decorate = set()
            target_curies_to_decorate = set()
            # identify the nodes that we should be adding virtual edges for
            for node in self.message.knowledge_graph.nodes:
                if hasattr(node, 'qnode_ids'):
                    if parameters['source_qnode_id'] in node.qnode_ids:
                        if "drug" in node.type or "chemical_substance" in node.type:  # this is now NOT checked by ARAX_overlay
                            source_curies_to_decorate.add(node.id)
                    if parameters['target_qnode_id'] in node.qnode_ids:
                        if "disease" in node.type or "phenotypic_feature" in node.type:  # this is now NOT checked by ARAX_overlay
                            target_curies_to_decorate.add(node.id)

            added_flag = False  # check to see if any edges where added
            # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute

            for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate):
                # create the edge attribute if it can be
                # loop over all equivalent curies and take the highest probability

                max_probability = 0
                converted_source_curie = self.convert_to_trained_curies(source_curie)
                converted_target_curie = self.convert_to_trained_curies(target_curie)
                if converted_source_curie is None or converted_target_curie is None:
                    continue
                res = list(itertools.product(converted_source_curie, converted_target_curie))
                if len(res) != 0:
                    all_probabilities = self.pred.prob_all(res)
                    if isinstance(all_probabilities, list):
                        max_probability = max([value for value in all_probabilities if np.isfinite(value)])

                value = max_probability

                #probability = self.pred.prob_single('ChEMBL:' + source_curie[22:], target_curie)  # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123
                #if probability and np.isfinite(probability):  # finite, that's ok, otherwise, stay with default
                #    value = probability[0]
                edge_attribute = EdgeAttribute(type=attribute_type, name=attribute_name, value=str(value), url=url)  # populate the edge attribute
                if edge_attribute and value != 0:
                    added_flag = True
                    # make the edge, add the attribute

                    # edge properties
                    now = datetime.now()
                    edge_type = "probably_treats"
                    qedge_ids = [parameters['virtual_relation_label']]
                    relation = parameters['virtual_relation_label']
                    is_defined_by = "ARAX"
                    defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                    provided_by = "ARAX"
                    confidence = None
                    weight = None  # TODO: could make the actual value of the attribute
                    source_id = source_curie
                    target_id = target_curie

                    # now actually add the virtual edges in
                    id = f"{relation}_{self.global_iter}"
                    self.global_iter += 1
                    edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id,
                                target_id=target_id,
                                is_defined_by=is_defined_by, defined_datetime=defined_datetime,
                                provided_by=provided_by,
                                confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids)
                    self.message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            if added_flag:
                edge_type = "probably_treats"
                relation = parameters['virtual_relation_label']
                qedge_id = parameters['virtual_relation_label']
                q_edge = QEdge(id=relation, type=edge_type, relation=relation,
                               source_id=parameters['source_qnode_id'], target_id=parameters['target_qnode_id'])  # TODO: ok to make the id and type the same thing?
                self.message.query_graph.edges.append(q_edge)
            return self.response

        else:  # you want to add it for each edge in the KG
            # iterate over KG edges, add the information
            try:
                # map curies to types
                curie_to_type = dict()
                for node in self.message.knowledge_graph.nodes:
                    curie_to_type[node.id] = node.type
                # then iterate over the edges and decorate if appropriate
                for edge in self.message.knowledge_graph.edges:
                    # Make sure the edge_attributes are not None
                    if not edge.edge_attributes:
                        edge.edge_attributes = []  # should be an array, but why not a list?
                    # now go and actually get the NGD
                    source_curie = edge.source_id
                    target_curie = edge.target_id
                    source_types = curie_to_type[source_curie]
                    target_types = curie_to_type[target_curie]
                    if (("drug" in source_types) or ("chemical_substance" in source_types)) and (("disease" in target_types) or ("phenotypic_feature" in target_types)):
                        temp_value = 0
                        # loop over all pairs of equivalent curies and take the highest probability

                        max_probability = 0
                        converted_source_curie = self.convert_to_trained_curies(source_curie)
                        converted_target_curie = self.convert_to_trained_curies(target_curie)
                        if converted_source_curie is None or converted_target_curie is None:
                            continue
                        res = list(itertools.product(converted_source_curie, converted_target_curie))
                        if len(res) != 0:
                            all_probabilities = self.pred.prob_all(res)
                            if isinstance(all_probabilities, list):
                                max_probability = max([value for value in all_probabilities if np.isfinite(value)])

                        value = max_probability

                        #probability = self.pred.prob_single('ChEMBL:' + source_curie[22:], target_curie)  # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123
                        #if probability and np.isfinite(probability):  # finite, that's ok, otherwise, stay with default
                        #    value = probability[0]
                    elif (("drug" in target_types) or ("chemical_substance" in target_types)) and (("disease" in source_types) or ("phenotypic_feature" in source_types)):
                        #probability = self.pred.prob_single('ChEMBL:' + target_curie[22:], source_curie)  # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123
                        #if probability and np.isfinite(probability):  # finite, that's ok, otherwise, stay with default
                        #    value = probability[0]

                        max_probability = 0
                        converted_source_curie = self.convert_to_trained_curies(source_curie)
                        converted_target_curie = self.convert_to_trained_curies(target_curie)
                        if converted_source_curie is None or converted_target_curie is None:
                            continue
                        res = list(itertools.product(converted_target_curie, converted_source_curie))
                        if len(res) != 0:
                            all_probabilities = self.pred.prob_all(res)
                            if isinstance(all_probabilities, list):
                                max_probability = max([value for value in all_probabilities if np.isfinite(value)])

                        value = max_probability

                    else:
                        continue
                    if value != 0:
                        edge_attribute = EdgeAttribute(type=attribute_type, name=attribute_name, value=str(value), url=url)  # populate the attribute
                        edge.edge_attributes.append(edge_attribute)  # append it to the list of attributes
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(f"Something went wrong adding the drug disease treatment probability")
            else:
                self.response.info(f"Drug disease treatment probability successfully added to edges")

            return self.response
    def compute_ngd(self):
        """
        Iterate over all the edges in the knowledge graph, compute the normalized google distance and stick that info
        on the edge_attributes
        :default: The default value to set for NGD if it returns a nan
        :return: response
        """
        if self.response.status != 'OK':  # Catches any errors that may have been logged during initialization
            self._close_database()
            return self.response
        parameters = self.parameters
        self.response.debug(f"Computing NGD")
        self.response.info(
            f"Computing the normalized Google distance: weighting edges based on source/target node "
            f"co-occurrence frequency in PubMed abstracts")

        self.response.info(
            "Converting CURIE identifiers to human readable names")
        node_curie_to_name = dict()
        try:
            for node in self.message.knowledge_graph.nodes:
                node_curie_to_name[node.id] = node.name
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(f"Something went wrong when converting names")
            self.response.error(tb, error_code=error_type.__name__)

        name = "normalized_google_distance"
        type = "EDAM:data_2526"
        value = self.parameters['default_value']
        url = "https://arax.rtx.ai/api/rtx/v1/ui/#/PubmedMeshNgd"

        # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them
        if 'virtual_relation_label' in parameters:
            source_curies_to_decorate = set()
            target_curies_to_decorate = set()
            curies_to_names = dict()
            # identify the nodes that we should be adding virtual edges for
            for node in self.message.knowledge_graph.nodes:
                if hasattr(node, 'qnode_ids'):
                    if parameters['source_qnode_id'] in node.qnode_ids:
                        source_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name
                    if parameters['target_qnode_id'] in node.qnode_ids:
                        target_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name

            # Convert these curies to their canonicalized curies (needed for the local NGD system)
            canonicalized_curie_map = self._get_canonical_curies_map(
                list(source_curies_to_decorate.union(
                    target_curies_to_decorate)))
            self.load_curie_to_pmids_data(canonicalized_curie_map.values())
            added_flag = False  # check to see if any edges where added
            num_computed_total = 0
            num_computed_slow = 0
            self.response.debug(
                f"Looping through node pairs and calculating NGD values")
            # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute
            for (source_curie,
                 target_curie) in itertools.product(source_curies_to_decorate,
                                                    target_curies_to_decorate):
                # create the edge attribute if it can be
                source_name = curies_to_names[source_curie]
                target_name = curies_to_names[target_curie]
                num_computed_total += 1
                canonical_source_curie = canonicalized_curie_map.get(
                    source_curie, source_curie)
                canonical_target_curie = canonicalized_curie_map.get(
                    target_curie, target_curie)
                ngd_value = self.calculate_ngd_fast(canonical_source_curie,
                                                    canonical_target_curie)
                if ngd_value is None:
                    ngd_value = self.NGD.get_ngd_for_all(
                        [source_curie, target_curie],
                        [source_name, target_name])
                    self.response.debug(
                        f"Had to use eUtils to compute NGD between {source_name} "
                        f"({canonical_source_curie}) and {target_name} ({canonical_target_curie}). "
                        f"Value is: {ngd_value}")
                    num_computed_slow += 1
                if np.isfinite(
                        ngd_value
                ):  # if ngd is finite, that's ok, otherwise, stay with default
                    value = ngd_value
                edge_attribute = EdgeAttribute(
                    type=type, name=name, value=str(value),
                    url=url)  # populate the NGD edge attribute
                if edge_attribute:
                    added_flag = True
                    # make the edge, add the attribute

                    # edge properties
                    now = datetime.now()
                    edge_type = "has_normalized_google_distance_with"
                    qedge_ids = [parameters['virtual_relation_label']]
                    relation = parameters['virtual_relation_label']
                    is_defined_by = "ARAX"
                    defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                    provided_by = "ARAX"
                    confidence = None
                    weight = None  # TODO: could make the actual value of the attribute
                    source_id = source_curie
                    target_id = target_curie

                    # now actually add the virtual edges in
                    id = f"{relation}_{self.global_iter}"
                    self.global_iter += 1
                    edge = Edge(id=id,
                                type=edge_type,
                                relation=relation,
                                source_id=source_id,
                                target_id=target_id,
                                is_defined_by=is_defined_by,
                                defined_datetime=defined_datetime,
                                provided_by=provided_by,
                                confidence=confidence,
                                weight=weight,
                                edge_attributes=[edge_attribute],
                                qedge_ids=qedge_ids)
                    self.message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            if added_flag:
                #edge_type = parameters['virtual_edge_type']
                edge_type = "has_normalized_google_distance_with"
                relation = parameters['virtual_relation_label']
                q_edge = QEdge(id=relation,
                               type=edge_type,
                               relation=relation,
                               source_id=parameters['source_qnode_id'],
                               target_id=parameters['target_qnode_id'])
                self.message.query_graph.edges.append(q_edge)

            self.response.info(f"NGD values successfully added to edges")
            num_computed_fast = num_computed_total - num_computed_slow
            percent_computed_fast = round(
                (num_computed_fast / num_computed_total) * 100)
            self.response.debug(
                f"Used fastNGD for {percent_computed_fast}% of edges "
                f"({num_computed_fast} of {num_computed_total})")
        else:  # you want to add it for each edge in the KG
            # iterate over KG edges, add the information
            try:
                # Map all nodes to their canonicalized curies in one batch (need canonical IDs for the local NGD system)
                canonicalized_curie_map = self._get_canonical_curies_map(
                    [node.id for node in self.message.knowledge_graph.nodes])
                self.load_curie_to_pmids_data(canonicalized_curie_map.values())
                num_computed_total = 0
                num_computed_slow = 0
                self.response.debug(
                    f"Looping through edges and calculating NGD values")
                for edge in self.message.knowledge_graph.edges:
                    # Make sure the edge_attributes are not None
                    if not edge.edge_attributes:
                        edge.edge_attributes = [
                        ]  # should be an array, but why not a list?
                    # now go and actually get the NGD
                    source_curie = edge.source_id
                    target_curie = edge.target_id
                    source_name = node_curie_to_name[source_curie]
                    target_name = node_curie_to_name[target_curie]
                    num_computed_total += 1
                    canonical_source_curie = canonicalized_curie_map.get(
                        source_curie, source_curie)
                    canonical_target_curie = canonicalized_curie_map.get(
                        target_curie, target_curie)
                    ngd_value = self.calculate_ngd_fast(
                        canonical_source_curie, canonical_target_curie)
                    if ngd_value is None:
                        ngd_value = self.NGD.get_ngd_for_all(
                            [source_curie, target_curie],
                            [source_name, target_name])
                        self.response.debug(
                            f"Had to use eUtils to compute NGD between {source_name} "
                            f"({canonical_source_curie}) and {target_name} ({canonical_target_curie}). "
                            f"Value is: {ngd_value}")
                        num_computed_slow += 1
                    if np.isfinite(
                            ngd_value
                    ):  # if ngd is finite, that's ok, otherwise, stay with default
                        value = ngd_value
                    ngd_edge_attribute = EdgeAttribute(
                        type=type, name=name, value=str(value),
                        url=url)  # populate the NGD edge attribute
                    edge.edge_attributes.append(
                        ngd_edge_attribute
                    )  # append it to the list of attributes
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(
                    f"Something went wrong adding the NGD edge attributes")
            else:
                self.response.info(f"NGD values successfully added to edges")
                num_computed_fast = num_computed_total - num_computed_slow
                percent_computed_fast = round(
                    (num_computed_fast / num_computed_total) * 100)
                self.response.debug(
                    f"Used fastNGD for {percent_computed_fast}% of edges "
                    f"({num_computed_fast} of {num_computed_total})")
            self._close_database()
            return self.response
Exemple #8
0
    def compute_ngd(self):
        """
        Iterate over all the edges in the knowledge graph, compute the normalized google distance and stick that info
        on the edge_attributes
        :default: The default value to set for NGD if it returns a nan
        :return: response
        """
        parameters = self.parameters
        self.response.debug(f"Computing NGD")
        self.response.info(f"Computing the normalized Google distance: weighting edges based on source/target node "
                           f"co-occurrence frequency in PubMed abstracts")

        self.response.info("Converting CURIE identifiers to human readable names")
        node_curie_to_name = dict()
        try:
            for node in self.message.knowledge_graph.nodes:
                node_curie_to_name[node.id] = node.name
        except:
            tb = traceback.format_exc()
            error_type, error, _ = sys.exc_info()
            self.response.error(f"Something went wrong when converting names")
            self.response.error(tb, error_code=error_type.__name__)


        self.response.warning(f"Utilizing API calls to NCBI eUtils, so this may take a while...")
        name = "normalized_google_distance"
        type = "data:2526"
        value = self.parameters['default_value']
        url = "https://arax.rtx.ai/api/rtx/v1/ui/#/PubmedMeshNgd"
        ngd_method_counts = {"fast": 0, "slow": 0}

        # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them
        if 'virtual_relation_label' in parameters:
            source_curies_to_decorate = set()
            target_curies_to_decorate = set()
            curies_to_names = dict()
            # identify the nodes that we should be adding virtual edges for
            for node in self.message.knowledge_graph.nodes:
                if hasattr(node, 'qnode_ids'):
                    if parameters['source_qnode_id'] in node.qnode_ids:
                        source_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name
                    if parameters['target_qnode_id'] in node.qnode_ids:
                        target_curies_to_decorate.add(node.id)
                        curies_to_names[node.id] = node.name
            added_flag = False  # check to see if any edges where added
            # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute
            for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate):
                # create the edge attribute if it can be
                source_name = curies_to_names[source_curie]
                target_name = curies_to_names[target_curie]
                self.response.debug(f"Computing NGD between {source_name} and {target_name}")
                ngd_value, method_used = self.NGD.get_ngd_for_all_fast([source_curie, target_curie], [source_name, target_name])
                ngd_method_counts[method_used] += 1
                if np.isfinite(ngd_value):  # if ngd is finite, that's ok, otherwise, stay with default
                    value = ngd_value
                edge_attribute = EdgeAttribute(type=type, name=name, value=str(value), url=url)  # populate the NGD edge attribute
                if edge_attribute:
                    added_flag = True
                    # make the edge, add the attribute

                    # edge properties
                    now = datetime.now()
                    edge_type = "has_normalized_google_distance_with"
                    qedge_ids = [parameters['virtual_relation_label']]
                    relation = parameters['virtual_relation_label']
                    is_defined_by = "ARAX"
                    defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S")
                    provided_by = "ARAX"
                    confidence = None
                    weight = None  # TODO: could make the actual value of the attribute
                    source_id = source_curie
                    target_id = target_curie

                    # now actually add the virtual edges in
                    id = f"{relation}_{self.global_iter}"
                    self.global_iter += 1
                    edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id,
                                target_id=target_id,
                                is_defined_by=is_defined_by, defined_datetime=defined_datetime,
                                provided_by=provided_by,
                                confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids)
                    self.message.knowledge_graph.edges.append(edge)

            # Now add a q_edge the query_graph since I've added an extra edge to the KG
            if added_flag:
                #edge_type = parameters['virtual_edge_type']
                edge_type = "has_normalized_google_distance_with"
                relation = parameters['virtual_relation_label']
                q_edge = QEdge(id=relation, type=edge_type, relation=relation,
                               source_id=parameters['source_qnode_id'], target_id=parameters[
                        'target_qnode_id'])
                self.message.query_graph.edges.append(q_edge)
        else:  # you want to add it for each edge in the KG
            # iterate over KG edges, add the information
            try:
                for edge in self.message.knowledge_graph.edges:
                    # Make sure the edge_attributes are not None
                    if not edge.edge_attributes:
                        edge.edge_attributes = []  # should be an array, but why not a list?
                    # now go and actually get the NGD
                    source_curie = edge.source_id
                    target_curie = edge.target_id
                    source_name = node_curie_to_name[source_curie]
                    target_name = node_curie_to_name[target_curie]
                    ngd_value, method_used = self.NGD.get_ngd_for_all_fast([source_curie, target_curie], [source_name, target_name])
                    ngd_method_counts[method_used] += 1
                    if np.isfinite(ngd_value):  # if ngd is finite, that's ok, otherwise, stay with default
                        value = ngd_value
                    ngd_edge_attribute = EdgeAttribute(type=type, name=name, value=str(value), url=url)  # populate the NGD edge attribute
                    edge.edge_attributes.append(ngd_edge_attribute)  # append it to the list of attributes
            except:
                tb = traceback.format_exc()
                error_type, error, _ = sys.exc_info()
                self.response.error(tb, error_code=error_type.__name__)
                self.response.error(f"Something went wrong adding the NGD edge attributes")
            else:
                self.response.info(f"NGD values successfully added to edges")
                self.response.debug(f"Used fast NGD for {ngd_method_counts['fast']} edges, back-up NGD method for {ngd_method_counts['slow']}")

            return self.response