def _create_swagger_attributes(object_type, property_names, neo4j_object): new_attributes = [] for property_name in property_names: property_value = neo4j_object.get(property_name) if type(property_value) is str: # Extract any lists, dicts, and booleans that are stored within strings if (property_value.startswith('[') and property_value.endswith(']')) or \ (property_value.startswith('{') and property_value.endswith('}')) or \ property_value.lower() == "true" or property_value.lower() == "false": property_value = ast.literal_eval(property_value) if property_value is not None and property_value != {} and property_value != []: swagger_attribute = NodeAttribute( ) if object_type == "node" else EdgeAttribute() swagger_attribute.name = property_name # Figure out whether this is a url and store it appropriately if type(property_value) is str and ( property_value.startswith("http:") or property_value.startswith("https:")): swagger_attribute.url = property_value else: swagger_attribute.value = property_value new_attributes.append(swagger_attribute) return new_attributes
def _create_ngd_edge(self, ngd_value: float, source_id: str, target_id: str) -> Edge: ngd_edge = Edge() ngd_edge.type = self.ngd_edge_type ngd_edge.source_id = source_id ngd_edge.target_id = target_id ngd_edge.id = f"NGD:{source_id}--{ngd_edge.type}--{target_id}" ngd_edge.provided_by = "ARAX" ngd_edge.is_defined_by = "ARAX" ngd_edge.edge_attributes = [ EdgeAttribute(name=self.ngd_edge_attribute_name, type=self.ngd_edge_attribute_type, value=ngd_value, url=self.ngd_edge_attribute_url) ] return ngd_edge
def predict_drug_treats_disease(self): """ Iterate over all the edges in the knowledge graph, add the drug-disease treatment probability for appropriate edges on the edge_attributes :return: response """ parameters = self.parameters self.response.debug(f"Computing drug disease treatment probability based on a machine learning model") self.response.info(f"Computing drug disease treatment probability based on a machine learning model: See [this publication](https://doi.org/10.1101/765305) for more details about how this is accomplished.") attribute_name = "probability_treats" attribute_type = "EDAM:data_0951" value = 0 # this will be the default value. If the model returns 0, or the default is there, don't include that edge url = "https://doi.org/10.1101/765305" # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them if 'virtual_relation_label' in parameters: source_curies_to_decorate = set() target_curies_to_decorate = set() # identify the nodes that we should be adding virtual edges for for node in self.message.knowledge_graph.nodes: if hasattr(node, 'qnode_ids'): if parameters['source_qnode_id'] in node.qnode_ids: if "drug" in node.type or "chemical_substance" in node.type: # this is now NOT checked by ARAX_overlay source_curies_to_decorate.add(node.id) if parameters['target_qnode_id'] in node.qnode_ids: if "disease" in node.type or "phenotypic_feature" in node.type: # this is now NOT checked by ARAX_overlay target_curies_to_decorate.add(node.id) added_flag = False # check to see if any edges where added # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate): # create the edge attribute if it can be # loop over all equivalent curies and take the highest probability max_probability = 0 converted_source_curie = self.convert_to_trained_curies(source_curie) converted_target_curie = self.convert_to_trained_curies(target_curie) if converted_source_curie is None or converted_target_curie is None: continue res = list(itertools.product(converted_source_curie, converted_target_curie)) if len(res) != 0: all_probabilities = self.pred.prob_all(res) if isinstance(all_probabilities, list): max_probability = max([value for value in all_probabilities if np.isfinite(value)]) value = max_probability #probability = self.pred.prob_single('ChEMBL:' + source_curie[22:], target_curie) # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123 #if probability and np.isfinite(probability): # finite, that's ok, otherwise, stay with default # value = probability[0] edge_attribute = EdgeAttribute(type=attribute_type, name=attribute_name, value=str(value), url=url) # populate the edge attribute if edge_attribute and value != 0: added_flag = True # make the edge, add the attribute # edge properties now = datetime.now() edge_type = "probably_treats" qedge_ids = [parameters['virtual_relation_label']] relation = parameters['virtual_relation_label'] is_defined_by = "ARAX" defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S") provided_by = "ARAX" confidence = None weight = None # TODO: could make the actual value of the attribute source_id = source_curie target_id = target_curie # now actually add the virtual edges in id = f"{relation}_{self.global_iter}" self.global_iter += 1 edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id, target_id=target_id, is_defined_by=is_defined_by, defined_datetime=defined_datetime, provided_by=provided_by, confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids) self.message.knowledge_graph.edges.append(edge) # Now add a q_edge the query_graph since I've added an extra edge to the KG if added_flag: edge_type = "probably_treats" relation = parameters['virtual_relation_label'] qedge_id = parameters['virtual_relation_label'] q_edge = QEdge(id=relation, type=edge_type, relation=relation, source_id=parameters['source_qnode_id'], target_id=parameters['target_qnode_id']) # TODO: ok to make the id and type the same thing? self.message.query_graph.edges.append(q_edge) return self.response else: # you want to add it for each edge in the KG # iterate over KG edges, add the information try: # map curies to types curie_to_type = dict() for node in self.message.knowledge_graph.nodes: curie_to_type[node.id] = node.type # then iterate over the edges and decorate if appropriate for edge in self.message.knowledge_graph.edges: # Make sure the edge_attributes are not None if not edge.edge_attributes: edge.edge_attributes = [] # should be an array, but why not a list? # now go and actually get the NGD source_curie = edge.source_id target_curie = edge.target_id source_types = curie_to_type[source_curie] target_types = curie_to_type[target_curie] if (("drug" in source_types) or ("chemical_substance" in source_types)) and (("disease" in target_types) or ("phenotypic_feature" in target_types)): temp_value = 0 # loop over all pairs of equivalent curies and take the highest probability max_probability = 0 converted_source_curie = self.convert_to_trained_curies(source_curie) converted_target_curie = self.convert_to_trained_curies(target_curie) if converted_source_curie is None or converted_target_curie is None: continue res = list(itertools.product(converted_source_curie, converted_target_curie)) if len(res) != 0: all_probabilities = self.pred.prob_all(res) if isinstance(all_probabilities, list): max_probability = max([value for value in all_probabilities if np.isfinite(value)]) value = max_probability #probability = self.pred.prob_single('ChEMBL:' + source_curie[22:], target_curie) # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123 #if probability and np.isfinite(probability): # finite, that's ok, otherwise, stay with default # value = probability[0] elif (("drug" in target_types) or ("chemical_substance" in target_types)) and (("disease" in source_types) or ("phenotypic_feature" in source_types)): #probability = self.pred.prob_single('ChEMBL:' + target_curie[22:], source_curie) # FIXME: when this was trained, it was ChEMBL:123, not CHEMBL.COMPOUND:CHEMBL123 #if probability and np.isfinite(probability): # finite, that's ok, otherwise, stay with default # value = probability[0] max_probability = 0 converted_source_curie = self.convert_to_trained_curies(source_curie) converted_target_curie = self.convert_to_trained_curies(target_curie) if converted_source_curie is None or converted_target_curie is None: continue res = list(itertools.product(converted_target_curie, converted_source_curie)) if len(res) != 0: all_probabilities = self.pred.prob_all(res) if isinstance(all_probabilities, list): max_probability = max([value for value in all_probabilities if np.isfinite(value)]) value = max_probability else: continue if value != 0: edge_attribute = EdgeAttribute(type=attribute_type, name=attribute_name, value=str(value), url=url) # populate the attribute edge.edge_attributes.append(edge_attribute) # append it to the list of attributes except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error(f"Something went wrong adding the drug disease treatment probability") else: self.response.info(f"Drug disease treatment probability successfully added to edges") return self.response
def make_edge_attribute_from_curies(self, source_curie, target_curie, source_name="", target_name="", default=0., name=""): """ Generic function to make an edge attribute :source_curie: CURIE of the source node for the edge under consideration :target_curie: CURIE of the target node for the edge under consideration :source_name: text name of the source node (in case the KP doesn't understand the CURIE) :target: text name of the target node (in case the KP doesn't understand the CURIE) :default: default value of the edge attribute :name: name of the KP functionality you want to apply """ try: # edge attributes name = name type = "EDAM:data_0951" url = "http://cohd.smart-api.info/" value = default node_curie_to_type = self.node_curie_to_type source_type = node_curie_to_type[source_curie] target_type = node_curie_to_type[target_curie] # figure out which knowledge provider to use # TODO: should handle this in a more structured fashion, does there exist a standardized KP API format? KP_to_use = None for KP in self.who_knows_about_what: # see which KP's can label both sources of information if self.in_common( source_type, self.who_knows_about_what[KP]) and self.in_common( target_type, self.who_knows_about_what[KP]): KP_to_use = KP if KP_to_use == 'COHD': # convert CURIE to OMOP identifiers # source_OMOPs = [str(x['omop_standard_concept_id']) for x in COHD.get_xref_to_OMOP(source_curie, 1)] res = self.cohdIndex.get_concept_ids(source_curie) if len(res) != 0: source_OMOPs = res else: source_OMOPs = [] # target_OMOPs = [str(x['omop_standard_concept_id']) for x in COHD.get_xref_to_OMOP(target_curie, 1)] res = self.cohdIndex.get_concept_ids(target_curie) if len(res) != 0: target_OMOPs = res else: target_OMOPs = [] # for domain in ["Condition", "Drug", "Procedure"]: # source_OMOPs.update([str(x['concept_id']) for x in COHD.find_concept_ids(source_name, domain=domain, dataset_id=3)]) # target_OMOPs.update([str(x['concept_id']) for x in COHD.find_concept_ids(target_name, domain=domain, dataset_id=3)]) ################################################# # FIXME: this was the old way # FIXME: Super hacky way to get around the fact that COHD can't map CHEMBL drugs # if source_curie.split('.')[0] == 'CHEMBL': # source_OMOPs = [str(x['concept_id']) for x in # COHD.find_concept_ids(source_name, domain="Drug", dataset_id=3)] # if target_curie.split('.')[0] == 'CHEMBL': # target_OMOPs = [str(x['concept_id']) for x in # COHD.find_concept_ids(target_name, domain="Drug", dataset_id=3)] # uniquify everything # source_OMOPs = list(set(source_OMOPs)) # target_OMOPs = list(set(target_OMOPs)) # Decide how to handle the response from the KP if name == 'paired_concept_frequency': # sum up all frequencies #TODO check with COHD people to see if this is kosher frequency = default # for (omop1, omop2) in itertools.product(source_OMOPs, target_OMOPs): # freq_data_list = self.cohdIndex.get_paired_concept_freq(omop1, omop2, 3) # use the hierarchical dataset # if len(freq_data_list) != 0: # freq_data = freq_data_list[0] # temp_value = freq_data['concept_frequency'] # if temp_value > frequency: # frequency = temp_value omop_pairs = [ f"{omop1}_{omop2}" for (omop1, omop2 ) in itertools.product(source_OMOPs, target_OMOPs) ] if len(omop_pairs) != 0: res = self.cohdIndex.get_paired_concept_freq( concept_id_pair=omop_pairs, dataset_id=3) # use the hierarchical dataset if len(res) != 0: maximum_concept_frequency = res[0][ 'concept_frequency'] # the result returned from get_paired_concept_freq was sorted by decreasing order frequency = maximum_concept_frequency # decorate the edges value = frequency elif name == 'observed_expected_ratio': # should probably take the largest obs/exp ratio # TODO: check with COHD people to see if this is kosher # FIXME: the ln_ratio can be negative, so I should probably account for this, but the object model doesn't like -np.inf value = float( "-inf" ) # FIXME: unclear in object model if attribute type dictates value type, or if value always needs to be a string ############################### # The following code was an experiment to see if it would speed things up, leaving it out for now since it's difficult to quantify if it does speed things up given the cacheing #if len(source_OMOPs) < len(target_OMOPs): # for omop1 in source_OMOPs: # omop_to_ln_ratio = dict() # response = COHD.get_obs_exp_ratio(omop1, domain="", dataset_id=3) # use the hierarchical dataset # if response: # for res in response: # omop_to_ln_ratio[str(res['concept_id_2'])] = res['ln_ratio'] # for omop2 in target_OMOPs: # if omop2 in omop_to_ln_ratio: # temp_value = omop_to_ln_ratio[omop2] # if temp_value > value: # value = temp_value #else: # for omop1 in target_OMOPs: # omop_to_ln_ratio = dict() # response = COHD.get_obs_exp_ratio(omop1, domain="", dataset_id=3) # use the hierarchical dataset # if response: # for res in response: # omop_to_ln_ratio[str(res['concept_id_2'])] = res['ln_ratio'] # for omop2 in source_OMOPs: # if omop2 in omop_to_ln_ratio: # temp_value = omop_to_ln_ratio[omop2] # if temp_value > value: # value = temp_value ################################### # for (omop1, omop2) in itertools.product(source_OMOPs, target_OMOPs): # #print(f"{omop1},{omop2}") # response = self.cohdIndex.get_obs_exp_ratio(omop1, concept_id_2=omop2, domain="", dataset_id=3) # use the hierarchical dataset # # response is a list, since this function is overloaded and can omit concept_id_2, take the first element # if response and 'ln_ratio' in response[0]: # temp_val = response[0]['ln_ratio'] # if temp_val > value: # value = temp_val omop_pairs = [ f"{omop1}_{omop2}" for (omop1, omop2 ) in itertools.product(source_OMOPs, target_OMOPs) ] if len(omop_pairs) != 0: res = self.cohdIndex.get_obs_exp_ratio( concept_id_pair=omop_pairs, domain="", dataset_id=3) # use the hierarchical dataset if len(res) != 0: maximum_ln_ratio = res[0][ 'ln_ratio'] # the result returned from get_paired_concept_freq was sorted by decreasing order value = maximum_ln_ratio elif name == 'chi_square': value = float("inf") # for (omop1, omop2) in itertools.product(source_OMOPs, target_OMOPs): # response = self.cohdIndex.get_chi_square(omop1, concept_id_2=omop2, domain="", dataset_id=3) # use the hierarchical dataset # # response is a list, since this function is overloaded and can omit concept_id_2, take the first element # if response and 'p-value' in response[0]: # temp_val = response[0]['p-value'] # if temp_val < value: # looking at p=values, so lower is better # value = temp_val omop_pairs = [ f"{omop1}_{omop2}" for (omop1, omop2 ) in itertools.product(source_OMOPs, target_OMOPs) ] if len(omop_pairs) != 0: res = self.cohdIndex.get_chi_square( concept_id_pair=omop_pairs, domain="", dataset_id=3) # use the hierarchical dataset if len(res) != 0: minimum_pvalue = res[0][ 'p-value'] # the result returned from get_paired_concept_freq was sorted by decreasing order value = minimum_pvalue # create the edge attribute edge_attribute = EdgeAttribute( type=type, name=name, value=str(value), url=url ) # populate the edge attribute # FIXME: unclear in object model if attribute type dictates value type, or if value always needs to be a string return edge_attribute else: return None except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong when adding the edge attribute from {KP_to_use}." )
def fisher_exact_test(self): """ Peform the fisher's exact test to expand or decorate the knowledge graph :return: response """ self.response.info( f"Performing Fisher's Exact Test to add p-value to edge attribute of virtual edge" ) # check the input parameters if 'source_qnode_id' not in self.parameters: self.response.error( f"The argument 'source_qnode_id' is required for fisher_exact_test function" ) return self.response else: source_qnode_id = self.parameters['source_qnode_id'] if 'virtual_relation_label' not in self.parameters: self.response.error( f"The argument 'virtual_relation_label' is required for fisher_exact_test function" ) return self.response else: virtual_relation_label = str( self.parameters['virtual_relation_label']) if 'target_qnode_id' not in self.parameters: self.response.error( f"The argument 'target_qnode_id' is required for fisher_exact_test function" ) return self.response else: target_qnode_id = self.parameters['target_qnode_id'] rel_edge_id = self.parameters[ 'rel_edge_id'] if 'rel_edge_id' in self.parameters else None top_n = int( self.parameters['top_n']) if 'top_n' in self.parameters else None cutoff = float( self.parameters['cutoff']) if 'cutoff' in self.parameters else None # initialize some variables nodes_info = {} edge_expand_kp = [] source_node_list = [] target_node_dict = {} size_of_target = {} source_node_exist = False target_node_exist = False query_edge_id = set() rel_edge_type = set() source_node_type = None target_node_type = None ## Check if source_qnode_id and target_qnode_id are in the Query Graph try: if len(self.message.query_graph.nodes) != 0: for node in self.message.query_graph.nodes: if node.id == source_qnode_id: source_node_exist = True source_node_type = node.type elif node.id == target_qnode_id: target_node_exist = True target_node_type = node.type else: pass else: self.response.error(f"There is no query node in QG") return self.response except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong with retrieving nodes in message QG") return self.response if source_node_exist: if target_node_exist: pass else: self.response.error( f"No query node with target qnode id {target_qnode_id} detected in QG for Fisher's Exact Test" ) return self.response else: self.response.error( f"No query node with source qnode id {source_qnode_id} detected in QG for Fisher's Exact Test" ) return self.response ## Check if there is a query edge connected to both source_qnode_id and target_qnode_id in the Query Graph try: if len(self.message.query_graph.edges) != 0: for edge in self.message.query_graph.edges: if edge.source_id == source_qnode_id and edge.target_id == target_qnode_id and edge.relation == None: query_edge_id.update( [edge.id]) # only actual query edge is added elif edge.source_id == target_qnode_id and edge.target_id == source_qnode_id and edge.relation == None: query_edge_id.update( [edge.id]) # only actual query edge is added else: continue else: self.response.error(f"There is no query edge in Query Graph") return self.response except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong with retrieving edges in message QG") return self.response if len(query_edge_id) != 0: if rel_edge_id: if rel_edge_id in query_edge_id: pass else: self.response.error( f"No query edge with qedge id {rel_edge_id} connected to both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id} detected in QG for Fisher's Exact Test" ) return self.response else: pass else: self.response.error( f"No query edge connected to both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id} detected in QG for Fisher's Exact Test" ) return self.response ## loop over all nodes in KG and collect their node information try: count = 0 for node in self.message.knowledge_graph.nodes: nodes_info[node.id] = { 'count': count, 'qnode_ids': node.qnode_ids, 'type': node.type[0], 'edge_index': [] } count = count + 1 except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong with retrieving nodes in message KG") return self.response ## loop over all edges in KG and create source node list and target node dict based on source_qnode_id, target_qnode_id as well as rel_edge_id (optional, otherwise all edges are considered) try: count = 0 for edge in self.message.knowledge_graph.edges: if edge.provided_by != "ARAX": nodes_info[edge.source_id]['edge_index'].append(count) nodes_info[edge.target_id]['edge_index'].append(count) if rel_edge_id: if rel_edge_id in edge.qedge_ids: if source_qnode_id in nodes_info[ edge.source_id]['qnode_ids']: edge_expand_kp.append(edge.is_defined_by) rel_edge_type.update([edge.type]) source_node_list.append(edge.source_id) if edge.target_id not in target_node_dict.keys( ): target_node_dict[edge.target_id] = { edge.source_id } else: target_node_dict[edge.target_id].update( [edge.source_id]) else: edge_expand_kp.append(edge.is_defined_by) rel_edge_type.update([edge.type]) source_node_list.append(edge.target_id) if edge.source_id not in target_node_dict.keys( ): target_node_dict[edge.source_id] = { edge.target_id } else: target_node_dict[edge.source_id].update( [edge.target_id]) else: pass else: if source_qnode_id in nodes_info[ edge.source_id]['qnode_ids']: if target_qnode_id in nodes_info[ edge.target_id]['qnode_ids']: edge_expand_kp.append(edge.is_defined_by) source_node_list.append(edge.source_id) if edge.target_id not in target_node_dict.keys( ): target_node_dict[edge.target_id] = { edge.source_id } else: target_node_dict[edge.target_id].update( [edge.source_id]) else: pass elif target_qnode_id in nodes_info[ edge.source_id]['qnode_ids']: if source_qnode_id in nodes_info[ edge.target_id]['qnode_ids']: edge_expand_kp.append(edge.is_defined_by) source_node_list.append(edge.target_id) if edge.source_id not in target_node_dict.keys( ): target_node_dict[edge.source_id] = { edge.target_id } else: target_node_dict[edge.source_id].update( [edge.target_id]) else: pass else: pass else: pass count = count + 1 ## record edge position in message.knowledge_graph except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong with retrieving edges in message KG") return self.response source_node_list = list( set(source_node_list)) ## remove the duplicate source node id ## check if there is no source node in message KG if len(source_node_list) == 0: self.response.error( f"No source node found in message KG for Fisher's Exact Test") return self.response ## check if there is no target node in message KG if len(target_node_dict) == 0: self.response.error( f"No target node found in message KG for Fisher's Exact Test") return self.response ## check if source node has more than one type. If so, throw an error if source_node_type is None: self.response.error( f"Source node with qnode id {source_qnode_id} was set to None in Query Graph. Please specify the node type" ) return self.response else: pass ## check if target node has more than one type. If so, throw an error if target_node_type is None: self.response.error( f"Target node with qnode id {target_qnode_id} was set to None in Query Graph. Please specify the node type" ) return self.response else: pass ##check how many kps were used in message KG. If more than one, the one with the max number of edges connnected to both source nodes and target nodes was used if len(collections.Counter(edge_expand_kp)) == 1: kp = edge_expand_kp[0] else: occurrences = collections.Counter(edge_expand_kp) max_index = max( [(value, index) for index, value in enumerate(occurrences.values())] )[1] # if there are more than one kp having the maximum number of edges, then the last one based on alphabetical order will be chosen. kp = list(occurrences.keys())[max_index] self.response.debug(f"{occurrences}") self.response.warning( f"More than one knowledge provider was detected to be used for expanding the edges connected to both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id}" ) self.response.warning( f"The knowledge provider {kp} was used to calculate Fisher's exact test because it has the maximum number of edges both source node with qnode id {source_qnode_id} and target node with qnode id {target_qnode_id}" ) ## Print out some information used to calculate FET if len(source_node_list) == 1: self.response.debug( f"{len(source_node_list)} source node with qnode id {source_qnode_id} and node type {source_node_type} was found in message KG and used to calculate Fisher's Exact Test" ) else: self.response.debug( f"{len(source_node_list)} source nodes with qnode id {source_qnode_id} and node type {source_node_type} was found in message KG and used to calculate Fisher's Exact Test" ) if len(target_node_dict) == 1: self.response.debug( f"{len(target_node_dict)} target node with qnode id {target_qnode_id} and node type {target_node_type} was found in message KG and used to calculate Fisher's Exact Test" ) else: self.response.debug( f"{len(target_node_dict)} target nodes with qnode id {target_qnode_id} and node type {target_node_type} was found in message KG and used to calculate Fisher's Exact Test" ) # find all nodes with the same type of 'source_qnode_id' nodes in specified KP ('ARAX/KG1','ARAX/KG2','BTE') that are adjacent to target nodes if kp == "ARAX/KG1": # query adjacent node in one DSL command by providing a list of query nodes to add_qnode() if rel_edge_id: if len( rel_edge_type ) == 1: # if the edge with rel_edge_id has only type, we use this rel_edge_type to find all source nodes in KP self.response.debug( f"{kp} and edge relation type {list(rel_edge_type)[0]} were used to calculate total adjacent nodes in Fisher's Exact Test" ) result = self.query_size_of_adjacent_nodes( node_curie=list(target_node_dict.keys()), adjacent_type=source_node_type, kp=kp, rel_type=list(rel_edge_type)[0], use_cypher_command=True) else: # if the edge with rel_edge_id has more than one type, we ignore the edge type and use all types to find all source nodes in KP self.response.warning( f"The edges with specified qedge id {rel_edge_id} have more than one type, we ignore the edge type and use all types to calculate Fisher's Exact Test" ) self.response.debug( f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test" ) result = self.query_size_of_adjacent_nodes( node_curie=list(target_node_dict.keys()), adjacent_type=source_node_type, kp=kp, rel_type=None, use_cypher_command=True) else: # if no rel_edge_id is specified, we ignore the edge type and use all types to find all source nodes in KP self.response.debug( f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test" ) result = self.query_size_of_adjacent_nodes( node_curie=list(target_node_dict.keys()), adjacent_type=source_node_type, kp=kp, rel_type=None, use_cypher_command=True) if result is None: return self.response ## Something wrong happened for querying the adjacent nodes else: size_of_target = result else: # query adjacent node for query nodes one by one in parallel if rel_edge_id: if len( rel_edge_type ) == 1: # if the edge with rel_edge_id has only type, we use this rel_edge_type to find all source nodes in KP self.response.debug( f"{kp} and edge relation type {list(rel_edge_type)[0]} were used to calculate total adjacent nodes in Fisher's Exact Test" ) parameter_list = [ (node, source_node_type, kp, list(rel_edge_type)[0]) for node in list(target_node_dict.keys()) ] else: # if the edge with rel_edge_id has more than one type, we ignore the edge type and use all types to find all source nodes in KP self.response.warning( f"The edges with specified qedge id {rel_edge_id} have more than one type, we ignore the edge type and use all types to calculate Fisher's Exact Test" ) self.response.debug( f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test" ) parameter_list = [(node, source_node_type, kp, None) for node in list(target_node_dict.keys()) ] else: # if no rel_edge_id is specified, we ignore the edge type and use all types to find all source nodes in KP self.response.debug( f"{kp} was used to calculate total adjacent nodes in Fisher's Exact Test" ) parameter_list = [(node, source_node_type, kp, None) for node in list(target_node_dict.keys())] ## get the count of all nodes with the type of 'source_qnode_id' nodes in KP for each target node in parallel try: with multiprocessing.Pool() as executor: target_count_res = [ elem for elem in executor.map( self._query_size_of_adjacent_nodes_parallel, parameter_list) ] executor.close() except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong with querying adjacent nodes in parallel" ) return self.response if any([type(elem) is list for elem in target_count_res]): for msg in [ elem2 for elem1 in target_count_res if type(elem1) is list for elem2 in elem1 ]: if type(msg) is tuple: self.response.error(msg[0], error_code=msg[1]) else: self.response.error(msg) return self.response ## Something wrong happened for querying the adjacent nodes else: for index in range(len(target_node_dict)): node = list(target_node_dict.keys())[index] size_of_target[node] = target_count_res[index] ## Based on KP detected in message KG, find the total number of node with the same type of source node if kp == 'ARAX/KG1': size_of_total = self.size_of_given_type_in_KP( node_type=source_node_type, use_cypher_command=True, kg='KG1') ## Try cypher query first if size_of_total is not None: if size_of_total != 0: self.response.debug( f"ARAX/KG1 and cypher query were used to calculate total number of node with the same type of source node in Fisher's Exact Test" ) self.response.debug( f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1" ) pass else: size_of_total = self.size_of_given_type_in_KP( node_type=source_node_type, use_cypher_command=False, kg='KG1' ) ## If cypher query fails, then try kgNodeIndex if size_of_total == 0: self.response.error( f"KG1 has 0 node with the same type of source node with qnode id {source_qnode_id}" ) return self.response else: self.response.debug( f"ARAX/KG1 and kgNodeIndex were used to calculate total number of node with the same type of source node in Fisher's Exact Test" ) self.response.debug( f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1" ) pass else: return self.response ## Something wrong happened for querying total number of node with the same type of source node elif kp == 'ARAX/KG2': ## check KG1 first as KG2 might have many duplicates. If KG1 is 0, then check KG2 size_of_total = self.size_of_given_type_in_KP( node_type=source_node_type, use_cypher_command=True, kg='KG1') ## Try cypher query first if size_of_total is not None: if size_of_total != 0: self.response.warning( f"Although ARAX/KG2 was found to have the maximum number of edges connected to both {source_qnode_id} and {target_qnode_id}, ARAX/KG1 and cypher query were used to find the total number of nodes with the same type of source node with qnode id {source_qnode_id} as KG2 might have many duplicates" ) self.response.debug( f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1" ) pass else: size_of_total = self.size_of_given_type_in_KP( node_type=source_node_type, use_cypher_command=False, kg='KG1' ) ## If cypher query fails, then try kgNodeIndex if size_of_total is not None: if size_of_total != 0: self.response.warning( f"Although ARAX/KG2 was found to have the maximum number of edges connected to both {source_qnode_id} and {target_qnode_id}, ARAX/KG1 and kgNodeIndex were used to find the total number of nodes with the same type of source node with qnode id {source_qnode_id} as KG2 might have many duplicates" ) self.response.debug( f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG1" ) pass else: size_of_total = self.size_of_given_type_in_KP( node_type=source_node_type, use_cypher_command=False, kg='KG2') if size_of_total is None: return self.response ## Something wrong happened for querying total number of node with the same type of source node elif size_of_total == 0: self.response.error( f"KG2 has 0 node with the same type of source node with qnode id {source_qnode_id}" ) return self.response else: self.response.debug( f"ARAX/KG2 and kgNodeIndex were used to calculate total number of node with the same type of source node in Fisher's Exact Test" ) self.response.debug( f"Total {size_of_total} nodes with node type {source_node_type} was found in ARAX/KG2" ) pass else: return self.response ## Something wrong happened for querying total number of node with the same type of source node else: return self.response ## Something wrong happened for querying total number of node with the same type of source node else: self.response.error( f"Only KG1 or KG2 is allowable to calculate the Fisher's exact test temporally" ) return self.response size_of_query_sample = len(source_node_list) self.response.debug(f"Computing Fisher's Exact Test P-value") # calculate FET p-value for each target node in parallel parameter_list = [ (node, len(target_node_dict[node]), size_of_target[node] - len(target_node_dict[node]), size_of_query_sample - len(target_node_dict[node]), (size_of_total - size_of_target[node]) - (size_of_query_sample - len(target_node_dict[node]))) for node in target_node_dict ] try: with multiprocessing.Pool() as executor: FETpvalue_list = [ elem for elem in executor.map( self._calculate_FET_pvalue_parallel, parameter_list) ] executor.close() except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong with computing Fisher's Exact Test P-value" ) return self.response if any([type(elem) is list for elem in FETpvalue_list]): for msg in [ elem2 for elem1 in FETpvalue_list if type(elem1) is list for elem2 in elem1 ]: if type(msg) is tuple: self.response.error(msg[0], error_code=msg[1]) else: self.response.error(msg) return self.response else: output = dict(FETpvalue_list) # check if the results need to be filtered output = dict(sorted(output.items(), key=lambda x: x[1])) if cutoff: output = dict(filter(lambda x: x[1] < cutoff, output.items())) else: pass if top_n: output = dict(list(output.items())[:top_n]) else: pass # add the virtual edge with FET result to message KG self.response.debug( f"Adding virtual edge with FET result to message KG") virtual_edge_list = [ Edge(id=f"{value[0]}_{index}", type='has_fisher_exact_test_p-value_with', relation=value[0], source_id=value[2], target_id=value[3], is_defined_by="ARAX", defined_datetime=datetime.now().strftime("%Y-%m-%d %H:%M:%S"), provided_by="ARAX", confidence=None, weight=None, edge_attributes=[ EdgeAttribute(type="data:1669", name="fisher_exact_test_p-value", value=str(value[1]), url=None) ], qedge_ids=[value[0]]) for index, value in enumerate( [(virtual_relation_label, output[adj], node, adj) for adj in target_node_dict if adj in output.keys() for node in target_node_dict[adj]], 1) ] self.message.knowledge_graph.edges.extend(virtual_edge_list) count = len(virtual_edge_list) self.response.debug( f"{count} new virtual edges were added to message KG") # add the virtual edge to message QG if count > 0: self.response.debug(f"Adding virtual edge to message QG") edge_type = "has_fisher_exact_test_p-value_with" q_edge = QEdge(id=virtual_relation_label, type=edge_type, relation=virtual_relation_label, source_id=source_qnode_id, target_id=target_qnode_id) self.message.query_graph.edges.append(q_edge) self.response.debug(f"One virtual edge was added to message QG") return self.response
def _create_icees_edge_attribute(self, p_value): return EdgeAttribute(name=self.icees_attribute_name, value=p_value, type=self.icees_attribute_type)
def compute_ngd(self): """ Iterate over all the edges in the knowledge graph, compute the normalized google distance and stick that info on the edge_attributes :default: The default value to set for NGD if it returns a nan :return: response """ if self.response.status != 'OK': # Catches any errors that may have been logged during initialization self._close_database() return self.response parameters = self.parameters self.response.debug(f"Computing NGD") self.response.info( f"Computing the normalized Google distance: weighting edges based on source/target node " f"co-occurrence frequency in PubMed abstracts") self.response.info( "Converting CURIE identifiers to human readable names") node_curie_to_name = dict() try: for node in self.message.knowledge_graph.nodes: node_curie_to_name[node.id] = node.name except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(f"Something went wrong when converting names") self.response.error(tb, error_code=error_type.__name__) name = "normalized_google_distance" type = "EDAM:data_2526" value = self.parameters['default_value'] url = "https://arax.rtx.ai/api/rtx/v1/ui/#/PubmedMeshNgd" # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them if 'virtual_relation_label' in parameters: source_curies_to_decorate = set() target_curies_to_decorate = set() curies_to_names = dict() # identify the nodes that we should be adding virtual edges for for node in self.message.knowledge_graph.nodes: if hasattr(node, 'qnode_ids'): if parameters['source_qnode_id'] in node.qnode_ids: source_curies_to_decorate.add(node.id) curies_to_names[node.id] = node.name if parameters['target_qnode_id'] in node.qnode_ids: target_curies_to_decorate.add(node.id) curies_to_names[node.id] = node.name # Convert these curies to their canonicalized curies (needed for the local NGD system) canonicalized_curie_map = self._get_canonical_curies_map( list(source_curies_to_decorate.union( target_curies_to_decorate))) self.load_curie_to_pmids_data(canonicalized_curie_map.values()) added_flag = False # check to see if any edges where added num_computed_total = 0 num_computed_slow = 0 self.response.debug( f"Looping through node pairs and calculating NGD values") # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate): # create the edge attribute if it can be source_name = curies_to_names[source_curie] target_name = curies_to_names[target_curie] num_computed_total += 1 canonical_source_curie = canonicalized_curie_map.get( source_curie, source_curie) canonical_target_curie = canonicalized_curie_map.get( target_curie, target_curie) ngd_value = self.calculate_ngd_fast(canonical_source_curie, canonical_target_curie) if ngd_value is None: ngd_value = self.NGD.get_ngd_for_all( [source_curie, target_curie], [source_name, target_name]) self.response.debug( f"Had to use eUtils to compute NGD between {source_name} " f"({canonical_source_curie}) and {target_name} ({canonical_target_curie}). " f"Value is: {ngd_value}") num_computed_slow += 1 if np.isfinite( ngd_value ): # if ngd is finite, that's ok, otherwise, stay with default value = ngd_value edge_attribute = EdgeAttribute( type=type, name=name, value=str(value), url=url) # populate the NGD edge attribute if edge_attribute: added_flag = True # make the edge, add the attribute # edge properties now = datetime.now() edge_type = "has_normalized_google_distance_with" qedge_ids = [parameters['virtual_relation_label']] relation = parameters['virtual_relation_label'] is_defined_by = "ARAX" defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S") provided_by = "ARAX" confidence = None weight = None # TODO: could make the actual value of the attribute source_id = source_curie target_id = target_curie # now actually add the virtual edges in id = f"{relation}_{self.global_iter}" self.global_iter += 1 edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id, target_id=target_id, is_defined_by=is_defined_by, defined_datetime=defined_datetime, provided_by=provided_by, confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids) self.message.knowledge_graph.edges.append(edge) # Now add a q_edge the query_graph since I've added an extra edge to the KG if added_flag: #edge_type = parameters['virtual_edge_type'] edge_type = "has_normalized_google_distance_with" relation = parameters['virtual_relation_label'] q_edge = QEdge(id=relation, type=edge_type, relation=relation, source_id=parameters['source_qnode_id'], target_id=parameters['target_qnode_id']) self.message.query_graph.edges.append(q_edge) self.response.info(f"NGD values successfully added to edges") num_computed_fast = num_computed_total - num_computed_slow percent_computed_fast = round( (num_computed_fast / num_computed_total) * 100) self.response.debug( f"Used fastNGD for {percent_computed_fast}% of edges " f"({num_computed_fast} of {num_computed_total})") else: # you want to add it for each edge in the KG # iterate over KG edges, add the information try: # Map all nodes to their canonicalized curies in one batch (need canonical IDs for the local NGD system) canonicalized_curie_map = self._get_canonical_curies_map( [node.id for node in self.message.knowledge_graph.nodes]) self.load_curie_to_pmids_data(canonicalized_curie_map.values()) num_computed_total = 0 num_computed_slow = 0 self.response.debug( f"Looping through edges and calculating NGD values") for edge in self.message.knowledge_graph.edges: # Make sure the edge_attributes are not None if not edge.edge_attributes: edge.edge_attributes = [ ] # should be an array, but why not a list? # now go and actually get the NGD source_curie = edge.source_id target_curie = edge.target_id source_name = node_curie_to_name[source_curie] target_name = node_curie_to_name[target_curie] num_computed_total += 1 canonical_source_curie = canonicalized_curie_map.get( source_curie, source_curie) canonical_target_curie = canonicalized_curie_map.get( target_curie, target_curie) ngd_value = self.calculate_ngd_fast( canonical_source_curie, canonical_target_curie) if ngd_value is None: ngd_value = self.NGD.get_ngd_for_all( [source_curie, target_curie], [source_name, target_name]) self.response.debug( f"Had to use eUtils to compute NGD between {source_name} " f"({canonical_source_curie}) and {target_name} ({canonical_target_curie}). " f"Value is: {ngd_value}") num_computed_slow += 1 if np.isfinite( ngd_value ): # if ngd is finite, that's ok, otherwise, stay with default value = ngd_value ngd_edge_attribute = EdgeAttribute( type=type, name=name, value=str(value), url=url) # populate the NGD edge attribute edge.edge_attributes.append( ngd_edge_attribute ) # append it to the list of attributes except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error( f"Something went wrong adding the NGD edge attributes") else: self.response.info(f"NGD values successfully added to edges") num_computed_fast = num_computed_total - num_computed_slow percent_computed_fast = round( (num_computed_fast / num_computed_total) * 100) self.response.debug( f"Used fastNGD for {percent_computed_fast}% of edges " f"({num_computed_fast} of {num_computed_total})") self._close_database() return self.response
def compute_ngd(self): """ Iterate over all the edges in the knowledge graph, compute the normalized google distance and stick that info on the edge_attributes :default: The default value to set for NGD if it returns a nan :return: response """ parameters = self.parameters self.response.debug(f"Computing NGD") self.response.info(f"Computing the normalized Google distance: weighting edges based on source/target node " f"co-occurrence frequency in PubMed abstracts") self.response.info("Converting CURIE identifiers to human readable names") node_curie_to_name = dict() try: for node in self.message.knowledge_graph.nodes: node_curie_to_name[node.id] = node.name except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(f"Something went wrong when converting names") self.response.error(tb, error_code=error_type.__name__) self.response.warning(f"Utilizing API calls to NCBI eUtils, so this may take a while...") name = "normalized_google_distance" type = "data:2526" value = self.parameters['default_value'] url = "https://arax.rtx.ai/api/rtx/v1/ui/#/PubmedMeshNgd" ngd_method_counts = {"fast": 0, "slow": 0} # if you want to add virtual edges, identify the source/targets, decorate the edges, add them to the KG, and then add one to the QG corresponding to them if 'virtual_relation_label' in parameters: source_curies_to_decorate = set() target_curies_to_decorate = set() curies_to_names = dict() # identify the nodes that we should be adding virtual edges for for node in self.message.knowledge_graph.nodes: if hasattr(node, 'qnode_ids'): if parameters['source_qnode_id'] in node.qnode_ids: source_curies_to_decorate.add(node.id) curies_to_names[node.id] = node.name if parameters['target_qnode_id'] in node.qnode_ids: target_curies_to_decorate.add(node.id) curies_to_names[node.id] = node.name added_flag = False # check to see if any edges where added # iterate over all pairs of these nodes, add the virtual edge, decorate with the correct attribute for (source_curie, target_curie) in itertools.product(source_curies_to_decorate, target_curies_to_decorate): # create the edge attribute if it can be source_name = curies_to_names[source_curie] target_name = curies_to_names[target_curie] self.response.debug(f"Computing NGD between {source_name} and {target_name}") ngd_value, method_used = self.NGD.get_ngd_for_all_fast([source_curie, target_curie], [source_name, target_name]) ngd_method_counts[method_used] += 1 if np.isfinite(ngd_value): # if ngd is finite, that's ok, otherwise, stay with default value = ngd_value edge_attribute = EdgeAttribute(type=type, name=name, value=str(value), url=url) # populate the NGD edge attribute if edge_attribute: added_flag = True # make the edge, add the attribute # edge properties now = datetime.now() edge_type = "has_normalized_google_distance_with" qedge_ids = [parameters['virtual_relation_label']] relation = parameters['virtual_relation_label'] is_defined_by = "ARAX" defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S") provided_by = "ARAX" confidence = None weight = None # TODO: could make the actual value of the attribute source_id = source_curie target_id = target_curie # now actually add the virtual edges in id = f"{relation}_{self.global_iter}" self.global_iter += 1 edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id, target_id=target_id, is_defined_by=is_defined_by, defined_datetime=defined_datetime, provided_by=provided_by, confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids) self.message.knowledge_graph.edges.append(edge) # Now add a q_edge the query_graph since I've added an extra edge to the KG if added_flag: #edge_type = parameters['virtual_edge_type'] edge_type = "has_normalized_google_distance_with" relation = parameters['virtual_relation_label'] q_edge = QEdge(id=relation, type=edge_type, relation=relation, source_id=parameters['source_qnode_id'], target_id=parameters[ 'target_qnode_id']) self.message.query_graph.edges.append(q_edge) else: # you want to add it for each edge in the KG # iterate over KG edges, add the information try: for edge in self.message.knowledge_graph.edges: # Make sure the edge_attributes are not None if not edge.edge_attributes: edge.edge_attributes = [] # should be an array, but why not a list? # now go and actually get the NGD source_curie = edge.source_id target_curie = edge.target_id source_name = node_curie_to_name[source_curie] target_name = node_curie_to_name[target_curie] ngd_value, method_used = self.NGD.get_ngd_for_all_fast([source_curie, target_curie], [source_name, target_name]) ngd_method_counts[method_used] += 1 if np.isfinite(ngd_value): # if ngd is finite, that's ok, otherwise, stay with default value = ngd_value ngd_edge_attribute = EdgeAttribute(type=type, name=name, value=str(value), url=url) # populate the NGD edge attribute edge.edge_attributes.append(ngd_edge_attribute) # append it to the list of attributes except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(tb, error_code=error_type.__name__) self.response.error(f"Something went wrong adding the NGD edge attributes") else: self.response.info(f"NGD values successfully added to edges") self.response.debug(f"Used fast NGD for {ngd_method_counts['fast']} edges, back-up NGD method for {ngd_method_counts['slow']}") return self.response
def compute_jaccard(self): message = self.message parameters = self.parameters self.response.debug(f"Computing Jaccard distance and adding this information as virtual edges") self.response.info(f"Computing Jaccard distance and adding this information as virtual edges") self.response.info("Getting all relevant nodes") # TODO: should I check that they're connected to the start node, or just assume that they are? # TODO: For now, assume that they are try: intermediate_nodes = set() end_node_to_intermediate_node_set = dict() # keys will be end node curies, values will be tuples the (intermediate curie ids, edge_type) for node in message.knowledge_graph.nodes: if parameters['intermediate_node_id'] in node.qnode_ids: intermediate_nodes.add(node.id) # add the intermediate node by it's identifier # also look for the source node id if parameters['start_node_id'] in node.qnode_ids: source_node_id = node.id if parameters['end_node_id'] in node.qnode_ids: end_node_to_intermediate_node_set[node.id] = set() # now iterate over the edges to look for the ones we need to add # TODO: Here, I won't care which direction the edges are pointing for edge in message.knowledge_graph.edges: if edge.source_id in intermediate_nodes: # if source is intermediate if edge.target_id in end_node_to_intermediate_node_set: end_node_to_intermediate_node_set[edge.target_id].add((edge.source_id, edge.type)) # add source elif edge.target_id in intermediate_nodes: # if target is intermediate if edge.source_id in end_node_to_intermediate_node_set: end_node_to_intermediate_node_set[edge.source_id].add((edge.target_id, edge.type)) # add target # now compute the actual jaccard indexes denom = len(intermediate_nodes) end_node_to_jaccard = dict() for end_node_id in end_node_to_intermediate_node_set: # TODO: add code here if you care about edge types numerator = len(end_node_to_intermediate_node_set[end_node_id]) jacc = numerator / float(denom) end_node_to_jaccard[end_node_id] = jacc # now add them all as virtual edges # edge properties j_iter = 0 now = datetime.now() #edge_type = parameters['virtual_edge_type'] edge_type = 'has_jaccard_index_with' qedge_ids = [parameters['virtual_relation_label']] relation = parameters['virtual_relation_label'] is_defined_by = "ARAX" defined_datetime = now.strftime("%Y-%m-%d %H:%M:%S") provided_by = "ARAX" confidence = None weight = None # TODO: could make the jaccard index the weight try: source_id = source_node_id except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.warning( f"Source node id: {parameters['start_node_id']} not found in the KG. Perhaps the KG is empty?") #self.response.error(tb, error_code=error_type.__name__) # edge attribute properties description = f"Jaccard index based on intermediate query nodes {parameters['intermediate_node_id']}" attribute_type = 'data:1772' name = "jaccard_index" url = None # now actually add the virtual edges in for end_node_id, value in end_node_to_jaccard.items(): edge_attribute = EdgeAttribute(type=attribute_type, name=name, value=value, url=url) id = f"J{j_iter}" j_iter += 1 target_id = end_node_id edge = Edge(id=id, type=edge_type, relation=relation, source_id=source_id, target_id=target_id, is_defined_by=is_defined_by, defined_datetime=defined_datetime, provided_by=provided_by, confidence=confidence, weight=weight, edge_attributes=[edge_attribute], qedge_ids=qedge_ids) message.knowledge_graph.edges.append(edge) # Now add a q_edge the query_graph since I've added an extra edge to the KG q_edge = QEdge(id=relation, type=edge_type, relation=relation, source_id=parameters['start_node_id'], target_id=parameters['end_node_id']) # TODO: ok to make the id and type the same thing? self.message.query_graph.edges.append(q_edge) return self.response except: tb = traceback.format_exc() error_type, error, _ = sys.exc_info() self.response.error(f"Something went wrong when computing the Jaccard index") self.response.error(tb, error_code=error_type.__name__)
def test1(self): #### Create the response object and fill it with attributes about the response response = Response() response.context = "http://translator.ncats.io" response.id = "http://rtx.ncats.io/api/v1/response/1234" response.type = "medical_translator_query_response" response.tool_version = "RTX 0.4" response.schema_version = "0.5" response.datetime = datetime.datetime.now().strftime( "%Y-%m-%d %H:%M:%S") response.original_question_text = "what proteins are affected by sickle cell anemia" response.restated_question_text = "Which proteins are affected by sickle cell anemia?" response.result_code = "OK" response.message = "1 result found" #### Create a disease node node1 = Node() node1.id = "http://omim.org/entry/603903" node1.type = "disease" node1.name = "sickle cell anemia" node1.accession = "OMIM:603903" node1.description = "A disease characterized by chronic hemolytic anemia..." #### Create a protein node node2 = Node() node2.id = "https://www.uniprot.org/uniprot/P00738" node2.type = "protein" node2.name = "Haptoglobin" node2.symbol = "HP" node2.accession = "UNIPROT:P00738" node2.description = "Haptoglobin captures, and combines with free plasma hemoglobin..." #### Create a node attribute node2attribute1 = NodeAttribute() node2attribute1.type = "comment" node2attribute1.name = "Complex_description" node2attribute1.value = "The Hemoglobin/haptoglobin complex is composed of a haptoglobin dimer bound to two hemoglobin alpha-beta dimers" node2.node_attributes = [node2attribute1] #### Create an edge between these 2 nodes edge1 = Edge() edge1.type = "is_caused_by_a_defect_in" edge1.source_id = node1.id edge1.target_id = node2.id edge1.confidence = 1.0 #### Add an origin and property for the edge origin1 = Origin() origin1.id = "https://api.monarchinitiative.org/api/bioentity/disease/OMIM:603903/genes/" origin1.type = "Monarch_BioLink_API_Relationship" #### Add an attribute attribute1 = EdgeAttribute() attribute1.type = "PubMed_article" attribute1.name = "Orthopaedic Manifestations of Sickle Cell Disease" attribute1.value = None attribute1.url = "https://www.ncbi.nlm.nih.gov/pubmed/29309293" origin1.attribute_list = [attribute1] edge1.origin_list = [origin1] #### Create the first result (potential answer) result1 = Result() result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345" result1.text = "A free text description of this result" result1.confidence = 0.932 #### Create a ResultGraph object and put the list of nodes and edges into it result_graph = ResultGraph() result_graph.node_list = [node1, node2] result_graph.edge_list = [edge1] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the response result_list = [result1] response.result_list = result_list print(response)