Exemple #1
0
    def _add_answers_to_kg(self, answer_kg, reasoner_std_response, input_qnode_id, output_qnode_id, qedge_id):
        kg_to_qg_ids_dict = self._build_kg_to_qg_id_dict(reasoner_std_response['results'])
        if reasoner_std_response['knowledge_graph']['edges']:
            remapped_node_ids = dict()
            self.response.debug(f"Got results back from BTE for this query "
                                f"({len(reasoner_std_response['knowledge_graph']['edges'])} edges)")
            for node in reasoner_std_response['knowledge_graph']['nodes']:
                swagger_node = Node()
                bte_node_id = node.get('id')
                swagger_node.name = node.get('name')
                swagger_node.type = eu.convert_string_to_snake_case(node.get('type'))

                # Map the returned BTE qg_ids back to the original qnode_ids in our query graph
                bte_qg_id = kg_to_qg_ids_dict['nodes'].get(bte_node_id)
                if bte_qg_id == "n0":
                    qnode_id = input_qnode_id
                elif bte_qg_id == "n1":
                    qnode_id = output_qnode_id
                else:
                    self.response.error("Could not map BTE qg_id to ARAX qnode_id", error_code="UnknownQGID")
                    return answer_kg

                # Find and use the preferred equivalent identifier for this node (if it's an 'output' node)
                if qnode_id == output_qnode_id:
                    if bte_node_id in remapped_node_ids:
                        swagger_node.id = remapped_node_ids.get(bte_node_id)
                    else:
                        equivalent_curies = [f"{prefix}:{eu.get_curie_local_id(local_id)}" for prefix, local_ids in
                                             node.get('equivalent_identifiers').items() for local_id in local_ids]
                        swagger_node.id = eu.get_best_equivalent_curie(equivalent_curies, swagger_node.type)
                        remapped_node_ids[bte_node_id] = swagger_node.id
                else:
                    swagger_node.id = bte_node_id

                eu.add_node_to_kg(answer_kg, swagger_node, qnode_id)

            for edge in reasoner_std_response['knowledge_graph']['edges']:
                swagger_edge = Edge()
                swagger_edge.id = edge.get("id")
                swagger_edge.type = edge.get('type')
                swagger_edge.source_id = remapped_node_ids.get(edge.get('source_id'), edge.get('source_id'))
                swagger_edge.target_id = remapped_node_ids.get(edge.get('target_id'), edge.get('target_id'))
                swagger_edge.is_defined_by = "BTE"
                swagger_edge.provided_by = edge.get('edge_source')
                # Map the returned BTE qg_id back to the original qedge_id in our query graph
                bte_qg_id = kg_to_qg_ids_dict['edges'].get(swagger_edge.id)
                if bte_qg_id != "e1":
                    self.response.error("Could not map BTE qg_id to ARAX qedge_id", error_code="UnknownQGID")
                    return answer_kg
                eu.add_edge_to_kg(answer_kg, swagger_edge, qedge_id)
        return answer_kg
Exemple #2
0
    def queryTerm(self, term):
        method = "queryTerm"
        attributes = self.findTermAttributesAndTypeByName(term)
        response = self.createResponse()
        if ( attributes["status"] == 'OK' ):
            node1 = Node()
            node1.id = "MESH:" + attributes["id"]
            node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"]
            node1.type = attributes["type"]
            node1.name = attributes["name"]
            node1.description = attributes["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://rtx.ncats.io/api/v1/result/0000"
            result1.text = "The term " + attributes["name"] + " refers to " + attributes["description"]
            result1.confidence = 1.0

            #### Create a ResultGraph object and put the list of nodes and edges into it
            result_graph = ResultGraph()
            result_graph.node_list = [ node1 ]

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the response
            result_list = [ result1 ]
            response.result_list = result_list

        else:
            response.response_code = "TermNotFound"
            response.message = "Unable to find term '" + term + "' in MeSH. No further information is available at this time."
            response.id = None

        return response
Exemple #3
0
    def _convert_kg2_node_to_swagger_node(self, neo4j_node):
        swagger_node = Node()
        swagger_node.id = neo4j_node.get('id')
        swagger_node.name = neo4j_node.get('name')
        swagger_node.description = neo4j_node.get('description')
        swagger_node.uri = neo4j_node.get('iri')
        swagger_node.node_attributes = []

        node_category = neo4j_node.get('category_label')
        swagger_node.type = eu.convert_string_or_list_to_list(node_category)

        # Fill out the 'symbol' property (only really relevant for nodes from UniProtKB)
        if swagger_node.symbol is None and swagger_node.id.lower().startswith(
                "uniprot"):
            swagger_node.symbol = neo4j_node.get('name')
            swagger_node.name = neo4j_node.get('full_name')

        # Add all additional properties on KG2 nodes as swagger NodeAttribute objects
        additional_kg2_node_properties = [
            'publications', 'synonym', 'category', 'provided_by', 'deprecated',
            'update_date'
        ]
        node_attributes = self._create_swagger_attributes(
            "node", additional_kg2_node_properties, neo4j_node)
        swagger_node.node_attributes += node_attributes

        return swagger_node
Exemple #4
0
    def _convert_kg1_node_to_swagger_node(neo4j_node: Dict[str, any]) -> Node:
        swagger_node = Node()
        swagger_node.id = neo4j_node.get('id')
        swagger_node.name = neo4j_node.get('name')
        swagger_node.symbol = neo4j_node.get('symbol')
        swagger_node.description = neo4j_node.get('description')
        swagger_node.uri = neo4j_node.get('uri')
        swagger_node.node_attributes = []

        node_category = neo4j_node.get('category')
        swagger_node.type = eu.convert_string_or_list_to_list(node_category)

        return swagger_node
Exemple #5
0
    def add_subgraph(self,
                     nodes,
                     edges,
                     plain_text,
                     confidence,
                     return_result=False):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = node_labels[node_key]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            #edge.origin_list = []
            #edge.origin_list.append(edge_source_db[(u, v)])  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge_objects.append(edge)
            #edge.attribute_list
            #edge.confidence
            #edge.evidence_type
            edge.is_defined_by = "RTX"
            #edge.provided_by = node_iris_to_node_object[edge_source_iri[(u, v)]].uri
            edge.provided_by = edge_source_db[(u, v)]
            #edge.publications
            #edge.qualifiers
            #edge.relation
            #edge.source_id
            #edge.target_id
            #edge.type

        # Create the result (potential answer)
        result1 = Result()
        result1.text = plain_text
        result1.confidence = confidence

        # Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = node_objects
        result_graph.edge_list = edge_objects

        # Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        # Put the first result (potential answer) into the response
        self._result_list.append(result1)
        self.response.result_list = self._result_list
        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.response.message = "%s result found" % self._num_results
        else:
            self.response.message = "%s results found" % self._num_results
        if return_result:
            return result1
        else:
            pass
Exemple #6
0
    def add_neighborhood_graph(self, nodes, edges, confidence=None):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = node_labels[node_key]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            #edge.origin_list = []
            #edge.origin_list.append(edge_source_db[(u, v)])  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge.provided_by = edge_source_db[(u, v)]
            edge.is_defined_by = "RTX"
            edge_objects.append(edge)

        # Create the result (potential answer)
        result1 = Result()
        text = "This is a subgraph extracted from the full RTX knowledge graph, including nodes and edges relevant to the query." \
            " This is not an answer to the query per se, but rather an opportunity to examine a small region of the RTX knowledge graph for further study. " \
            "Formal answers to the query are below."
        result1.text = text
        result1.confidence = confidence
        result1.result_type = "neighborhood graph"

        # Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = node_objects
        result_graph.edge_list = edge_objects

        # Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        # Put the first result (potential answer) into the response
        self._result_list.append(result1)
        self.response.result_list = self._result_list
Exemple #7
0
    def add_subgraph(self,
                     nodes,
                     edges,
                     description,
                     confidence,
                     return_result=False,
                     suppress_bindings=False):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        edge_ids = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]
            edge_ids[(u, v)] = data['properties']['provided_by']  # FIXME

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = [node_labels[node_key]]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

            #### Add this node to the master knowledge graph
            if node.id not in self._node_ids:
                self.message.knowledge_graph.nodes.append(node)
                self._node_ids[node.id] = node.type[
                    0]  # Just take the first of potentially several FIXME

        #### Create the bindings lists
        node_bindings = list()
        edge_bindings = list()

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            #edge.id is set below when building the bindings
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            edge_objects.append(edge)
            #edge.attribute_list
            #edge.confidence
            #edge.evidence_type
            edge.is_defined_by = "RTX"
            edge.provided_by = edge_source_db[(u, v)]
            #edge.publications
            #edge.qualifiers
            #edge.relation
            #edge.source_id
            #edge.target_id
            #edge.type

            #### Add this edge to the master knowledge graph
            edge_str = "%s -%s- %s" % (edge.source_id, edge.type,
                                       edge.target_id)
            if edge_str not in self._edge_ids:
                self.message.knowledge_graph.edges.append(edge)
                edge.id = "%d" % self._edge_counter
                self._edge_ids[edge_str] = edge.id
                self._edge_counter += 1
            else:
                edge.id = self._edge_ids[edge_str]

            #### Try to figure out how the source fits into the query_graph for the bindings
            source_type = self._node_ids[edge.source_id]
            if edge.source_id in self._type_map:
                source_knowledge_map_key = self._type_map[edge.source_id]
            else:
                source_knowledge_map_key = self._type_map[source_type]
            if not source_knowledge_map_key:
                eprint(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % source_type)
                raise Exception(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % source_type)

            node_bindings.append(
                NodeBinding(qg_id=source_knowledge_map_key,
                            kg_id=edge.source_id))
            #			if source_knowledge_map_key not in node_bindings:
            #				node_bindings[source_knowledge_map_key] = list()
            #				node_bindings_dict[source_knowledge_map_key] = dict()
            #			if edge.source_id not in node_bindings_dict[source_knowledge_map_key]:
            #				node_bindings[source_knowledge_map_key].append(edge.source_id)
            #				node_bindings_dict[source_knowledge_map_key][edge.source_id] = 1

            #### Try to figure out how the target fits into the query_graph for the knowledge map
            target_type = self._node_ids[edge.target_id]
            if edge.target_id in self._type_map:
                target_knowledge_map_key = self._type_map[edge.target_id]
            else:
                target_knowledge_map_key = self._type_map[target_type]
            if not target_knowledge_map_key:
                eprint(
                    "ERROR: Expected to find '%s' in the response._type_map, but did not"
                    % target_type)
                raise Exception(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % target_type)

            node_bindings.append(
                NodeBinding(qg_id=target_knowledge_map_key,
                            kg_id=edge.target_id))
            #			if target_knowledge_map_key not in node_bindings:
            #				node_bindings[target_knowledge_map_key] = list()
            #				node_bindings_dict[target_knowledge_map_key] = dict()
            #			if edge.target_id not in node_bindings_dict[target_knowledge_map_key]:
            #				node_bindings[target_knowledge_map_key].append(edge.target_id)
            #				node_bindings_dict[target_knowledge_map_key][edge.target_id] = 1

            #### Try to figure out how the edge fits into the query_graph for the knowledge map
            source_target_key = "e" + source_knowledge_map_key + "-" + target_knowledge_map_key
            target_source_key = "e" + target_knowledge_map_key + "-" + source_knowledge_map_key
            if edge.type in self._type_map:
                knowledge_map_key = self._type_map[edge.type]
            elif source_target_key in self._type_map:
                knowledge_map_key = source_target_key
            elif target_source_key in self._type_map:
                knowledge_map_key = target_source_key
            else:
                eprint(
                    "ERROR: Expected to find '%s' or '%s' or '%s' in the response._type_map, but did not"
                    % (edge.type, source_target_key, target_source_key))
                knowledge_map_key = "ERROR"

            edge_bindings.append(
                EdgeBinding(qg_id=knowledge_map_key, kg_id=edge.id))


#			if knowledge_map_key not in edge_bindings:
#				edge_bindings[knowledge_map_key] = list()
#				edge_bindings_dict[knowledge_map_key] = dict()
#			if edge.id not in edge_bindings_dict[knowledge_map_key]:
#				edge_bindings[knowledge_map_key].append(edge.id)
#				edge_bindings_dict[knowledge_map_key][edge.id] = 1

# Create the result (potential answer)
        result1 = Result()
        result1.reasoner_id = "RTX"
        result1.description = description
        result1.confidence = confidence
        if suppress_bindings is False:
            result1.node_bindings = node_bindings
            result1.edge_bindings = edge_bindings

        # Create a KnowledgeGraph object and put the list of nodes and edges into it
        #### This is still legal, then is redundant with the knowledge map, so leave it out maybe
        knowledge_graph = KnowledgeGraph()
        knowledge_graph.nodes = node_objects
        knowledge_graph.edges = edge_objects
        if suppress_bindings is True:
            result1.result_graph = knowledge_graph

        # Put the first result (potential answer) into the message
        self._results.append(result1)
        self.message.results = self._results

        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.message.code_description = "%s result found" % self._num_results
        else:
            self.message.code_description = "%s results found" % self._num_results

        #### Finish and return the result if requested
        if return_result:
            return result1
        else:
            pass
Exemple #8
0
    def answer(self, entity, use_json=False):
        """
		Answer a question of the type "What is X" but is general:
		:param entity: KG neo4j node name (eg "carbetocin")
		:param use_json: If the answer should be in Translator standardized API output format
		:return: a description and type of the node
		"""

        #### See if this entity is in the KG via the index
        eprint("Looking up '%s' in KgNodeIndex" % entity)
        kgNodeIndex = KGNodeIndex()
        curies = kgNodeIndex.get_curies(entity)

        #### If not in the KG, then return no information
        if not curies:
            if not use_json:
                return None
            else:
                error_code = "TermNotFound"
                error_message = "This concept is not in our knowledge graph"
                response = FormatOutput.FormatResponse(0)
                response.add_error_message(error_code, error_message)
                return response.message

        # Get label/kind of node the source is
        eprint("Getting properties for '%s'" % curies[0])
        properties = RU.get_node_properties(curies[0])
        eprint("Properties are:")
        eprint(properties)

        #### By default, return the results just as a plain simple list of data structures
        if not use_json:
            return properties

        #### Or, if requested, format the output as the standardized API output format
        else:
            #### Create a stub Message object
            response = FormatOutput.FormatResponse(0)
            response.message.table_column_names = [
                "id", "type", "name", "description", "uri"
            ]
            response.message.code_description = None

            #### Create a Node object and fill it
            node1 = Node()
            node1.id = properties["id"]
            node1.uri = properties["uri"]
            node1.type = [properties["category"]]
            node1.name = properties["name"]
            node1.description = properties["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://arax.ncats.io/api/v1/result/0000"
            result1.description = "The term %s is in our knowledge graph and is defined as %s" % (
                properties["name"], properties["description"])
            result1.confidence = 1.0
            result1.essence = properties["name"]
            result1.essence_type = properties["category"]
            node_types = ",".join(node1.type)
            result1.row_data = [
                node1.id, node_types, node1.name, node1.description, node1.uri
            ]

            #### Create a KnowledgeGraph object and put the list of nodes and edges into it
            result_graph = KnowledgeGraph()
            result_graph.nodes = [node1]
            result_graph.edges = []

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the message
            results = [result1]
            response.message.results = results

            #### Also put the union of all result_graph components into the top Message KnowledgeGraph
            #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result
            response.message.knowledge_graph = result_graph

            #### Also manufacture a query_graph post hoc
            qnode1 = QNode()
            qnode1.id = "n00"
            qnode1.curie = properties["id"]
            qnode1.type = None
            query_graph = QueryGraph()
            query_graph.nodes = [qnode1]
            query_graph.edges = []
            response.message.query_graph = query_graph

            #### Create the corresponding knowledge_map
            node_binding = NodeBinding(qg_id="n00", kg_id=properties["id"])
            result1.node_bindings = [node_binding]
            result1.edge_bindings = []

            #eprint(response.message)
            return response.message
Exemple #9
0
 def _create_ngd_node(kg2_node: Node) -> Node:
     ngd_node = Node()
     ngd_node.id = kg2_node.id
     ngd_node.name = kg2_node.name
     ngd_node.type = kg2_node.type
     return ngd_node
Exemple #10
0
    def add_subgraph(self, nodes, edges, plain_text, confidence):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            node_descriptions[u] = data['properties']['description']
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['iri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['iri']
            node_curies[u] = data['properties']['curie_id']
            node_uuids2curie[data['properties']
                             ['UUID']] = data['properties']['curie_id']

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['sourcedb']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = node_labels[node_key]
            node.name = node_names[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            edge.origin_list = []
            edge.origin_list.append(
                edge_source_db[(u, v)]
            )  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge_objects.append(edge)

        # Create the result (potential answer)
        result1 = Result()
        #result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345"
        #result1.id = "-1"
        result1.text = plain_text
        result1.confidence = confidence

        # Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = node_objects
        result_graph.edge_list = edge_objects

        # Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        # Put the first result (potential answer) into the response
        self._result_list.append(result1)
        self.response.result_list = self._result_list
        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.response.message = "%s result found" % self._num_results
        else:
            self.response.message = "%s results found" % self._num_results
Exemple #11
0
    def queryTerm(self, term):
        method = "queryTerm"
        attributes = self.findTermAttributesAndTypeByName(term)
        message = self.createMessage()
        if ( attributes["status"] == 'OK' ):
            message.code_description = "1 result found"
            message.table_column_names = [ "id", "type", "name", "description", "uri" ]

            #### Create a Node object and fill it
            node1 = Node()
            node1.id = "MESH:" + attributes["id"]
            node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"]
            node1.type = [ attributes["type"] ]
            node1.name = attributes["name"]
            node1.description = attributes["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://rtx.ncats.io/api/v1/result/0000"
            result1.description = "The term " + attributes["name"] + " refers to " + attributes["description"]
            result1.confidence = 1.0
            result1.essence = attributes["name"]
            result1.essence_type = attributes["type"]
            node_types = ",".join(node1.type)
            result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ]

            #### Create a KnowledgeGraph object and put the list of nodes and edges into it
            result_graph = KnowledgeGraph()
            result_graph.nodes = [ node1 ]

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the message
            results = [ result1 ]
            message.results = results

            #### Also put the union of all result_graph components into the top Message KnowledgeGraph
            #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result
            message.knowledge_graph = result_graph

            #### Also manufacture a query_graph post hoc
            qnode1 = QNode()
            qnode1.node_id = "n00"
            qnode1.curie = "MESH:" + attributes["id"]
            qnode1.type = None
            query_graph = QueryGraph()
            query_graph.nodes = [ qnode1 ]
            query_graph.edges = []
            message.query_graph = query_graph

            #### Create the corresponding knowledge_map
            knowledge_map = { "n00": "MESH:" + attributes["id"] }
            result1.knowledge_map = knowledge_map

        else:
            message.message_code = "TermNotFound"
            message.code_description = "Unable to find this term in MeSH. No further information is available at this time."
            message.id = None

        return message
Exemple #12
0
    def test1(self):

        #### Create the response object and fill it with attributes about the response
        response = Response()
        response.context = "http://translator.ncats.io"
        response.id = "http://rtx.ncats.io/api/v1/response/1234"
        response.type = "medical_translator_query_response"
        response.tool_version = "RTX 0.4"
        response.schema_version = "0.5"
        response.datetime = datetime.datetime.now().strftime(
            "%Y-%m-%d %H:%M:%S")
        response.original_question_text = "what proteins are affected by sickle cell anemia"
        response.restated_question_text = "Which proteins are affected by sickle cell anemia?"
        response.result_code = "OK"
        response.message = "1 result found"

        #### Create a disease node
        node1 = Node()
        node1.id = "http://omim.org/entry/603903"
        node1.type = "disease"
        node1.name = "sickle cell anemia"
        node1.accession = "OMIM:603903"
        node1.description = "A disease characterized by chronic hemolytic anemia..."

        #### Create a protein node
        node2 = Node()
        node2.id = "https://www.uniprot.org/uniprot/P00738"
        node2.type = "protein"
        node2.name = "Haptoglobin"
        node2.symbol = "HP"
        node2.accession = "UNIPROT:P00738"
        node2.description = "Haptoglobin captures, and combines with free plasma hemoglobin..."

        #### Create a node attribute
        node2attribute1 = NodeAttribute()
        node2attribute1.type = "comment"
        node2attribute1.name = "Complex_description"
        node2attribute1.value = "The Hemoglobin/haptoglobin complex is composed of a haptoglobin dimer bound to two hemoglobin alpha-beta dimers"
        node2.node_attributes = [node2attribute1]

        #### Create an edge between these 2 nodes
        edge1 = Edge()
        edge1.type = "is_caused_by_a_defect_in"
        edge1.source_id = node1.id
        edge1.target_id = node2.id
        edge1.confidence = 1.0

        #### Add an origin and property for the edge
        origin1 = Origin()
        origin1.id = "https://api.monarchinitiative.org/api/bioentity/disease/OMIM:603903/genes/"
        origin1.type = "Monarch_BioLink_API_Relationship"

        #### Add an attribute
        attribute1 = EdgeAttribute()
        attribute1.type = "PubMed_article"
        attribute1.name = "Orthopaedic Manifestations of Sickle Cell Disease"
        attribute1.value = None
        attribute1.url = "https://www.ncbi.nlm.nih.gov/pubmed/29309293"
        origin1.attribute_list = [attribute1]
        edge1.origin_list = [origin1]

        #### Create the first result (potential answer)
        result1 = Result()
        result1.id = "http://rtx.ncats.io/api/v1/response/1234/result/2345"
        result1.text = "A free text description of this result"
        result1.confidence = 0.932

        #### Create a ResultGraph object and put the list of nodes and edges into it
        result_graph = ResultGraph()
        result_graph.node_list = [node1, node2]
        result_graph.edge_list = [edge1]

        #### Put the ResultGraph into the first result (potential answer)
        result1.result_graph = result_graph

        #### Put the first result (potential answer) into the response
        result_list = [result1]
        response.result_list = result_list

        print(response)