def add_text(self, description, confidence=1): result1 = Result() result1.description = description result1.confidence = confidence self._results.append(result1) self.message.results = self._results # Increment the number of results self._num_results += 1 if self._num_results == 1: self.message.code_description = "%s result found" % self._num_results else: self.message.code_description = "%s results found" % self._num_results
def add_subgraph(self, nodes, edges, description, confidence, return_result=False, suppress_bindings=False): """ Populate the object model using networkx neo4j subgraph :param nodes: nodes in the subgraph (g.nodes(data=True)) :param edges: edges in the subgraph (g.edges(data=True)) :return: none """ # Get the relevant info from the nodes and edges node_keys = [] node_descriptions = dict() node_names = dict() node_labels = dict() node_uuids = dict() node_accessions = dict() node_iris = dict() node_uuids2iri = dict() node_curies = dict() node_uuids2curie = dict() for u, data in nodes: node_keys.append(u) if 'description' in data['properties']: node_descriptions[u] = data['properties']['description'] else: node_descriptions[u] = "None" node_names[u] = data['properties']['name'] node_labels[u] = list(set(data['labels']).difference({'Base'}))[0] node_uuids[u] = data['properties']['UUID'] node_accessions[u] = data['properties']['accession'] node_iris[u] = data['properties']['uri'] node_uuids2iri[data['properties'] ['UUID']] = data['properties']['uri'] curie_id = data['properties']['id'] if curie_id.split(':')[0].upper() == "CHEMBL": curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1] node_uuids2curie[data['properties']['UUID']] = curie_id node_curies[ u] = curie_id # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address) edge_keys = [] edge_types = dict() edge_source_db = dict() edge_source_iri = dict() edge_target_iri = dict() edge_source_curie = dict() edge_target_curie = dict() edge_ids = dict() for u, v, data in edges: edge_keys.append((u, v)) edge_types[(u, v)] = data['type'] edge_source_db[(u, v)] = data['properties']['provided_by'] edge_source_iri[( u, v)] = node_uuids2iri[data['properties']['source_node_uuid']] edge_target_iri[( u, v)] = node_uuids2iri[data['properties']['target_node_uuid']] edge_source_curie[( u, v)] = node_uuids2curie[data['properties']['source_node_uuid']] edge_target_curie[( u, v)] = node_uuids2curie[data['properties']['target_node_uuid']] edge_ids[(u, v)] = data['properties']['provided_by'] # FIXME # For each node, populate the relevant information node_objects = [] node_iris_to_node_object = dict() for node_key in node_keys: node = Node() node.id = node_curies[node_key] node.type = [node_labels[node_key]] node.name = node_names[node_key] node.uri = node_iris[node_key] node.accession = node_accessions[node_key] node.description = node_descriptions[node_key] node_objects.append(node) node_iris_to_node_object[node_iris[node_key]] = node #### Add this node to the master knowledge graph if node.id not in self._node_ids: self.message.knowledge_graph.nodes.append(node) self._node_ids[node.id] = node.type[ 0] # Just take the first of potentially several FIXME #### Create the bindings lists node_bindings = list() edge_bindings = list() # for each edge, create an edge between them edge_objects = [] for u, v in edge_keys: edge = Edge() #edge.id is set below when building the bindings edge.type = edge_types[(u, v)] edge.source_id = node_iris_to_node_object[edge_source_iri[(u, v)]].id edge.target_id = node_iris_to_node_object[edge_target_iri[(u, v)]].id edge_objects.append(edge) #edge.attribute_list #edge.confidence #edge.evidence_type edge.is_defined_by = "RTX" edge.provided_by = edge_source_db[(u, v)] #edge.publications #edge.qualifiers #edge.relation #edge.source_id #edge.target_id #edge.type #### Add this edge to the master knowledge graph edge_str = "%s -%s- %s" % (edge.source_id, edge.type, edge.target_id) if edge_str not in self._edge_ids: self.message.knowledge_graph.edges.append(edge) edge.id = "%d" % self._edge_counter self._edge_ids[edge_str] = edge.id self._edge_counter += 1 else: edge.id = self._edge_ids[edge_str] #### Try to figure out how the source fits into the query_graph for the bindings source_type = self._node_ids[edge.source_id] if edge.source_id in self._type_map: source_knowledge_map_key = self._type_map[edge.source_id] else: source_knowledge_map_key = self._type_map[source_type] if not source_knowledge_map_key: eprint( "Expected to find '%s' in the response._type_map, but did not" % source_type) raise Exception( "Expected to find '%s' in the response._type_map, but did not" % source_type) node_bindings.append( NodeBinding(qg_id=source_knowledge_map_key, kg_id=edge.source_id)) # if source_knowledge_map_key not in node_bindings: # node_bindings[source_knowledge_map_key] = list() # node_bindings_dict[source_knowledge_map_key] = dict() # if edge.source_id not in node_bindings_dict[source_knowledge_map_key]: # node_bindings[source_knowledge_map_key].append(edge.source_id) # node_bindings_dict[source_knowledge_map_key][edge.source_id] = 1 #### Try to figure out how the target fits into the query_graph for the knowledge map target_type = self._node_ids[edge.target_id] if edge.target_id in self._type_map: target_knowledge_map_key = self._type_map[edge.target_id] else: target_knowledge_map_key = self._type_map[target_type] if not target_knowledge_map_key: eprint( "ERROR: Expected to find '%s' in the response._type_map, but did not" % target_type) raise Exception( "Expected to find '%s' in the response._type_map, but did not" % target_type) node_bindings.append( NodeBinding(qg_id=target_knowledge_map_key, kg_id=edge.target_id)) # if target_knowledge_map_key not in node_bindings: # node_bindings[target_knowledge_map_key] = list() # node_bindings_dict[target_knowledge_map_key] = dict() # if edge.target_id not in node_bindings_dict[target_knowledge_map_key]: # node_bindings[target_knowledge_map_key].append(edge.target_id) # node_bindings_dict[target_knowledge_map_key][edge.target_id] = 1 #### Try to figure out how the edge fits into the query_graph for the knowledge map source_target_key = "e" + source_knowledge_map_key + "-" + target_knowledge_map_key target_source_key = "e" + target_knowledge_map_key + "-" + source_knowledge_map_key if edge.type in self._type_map: knowledge_map_key = self._type_map[edge.type] elif source_target_key in self._type_map: knowledge_map_key = source_target_key elif target_source_key in self._type_map: knowledge_map_key = target_source_key else: eprint( "ERROR: Expected to find '%s' or '%s' or '%s' in the response._type_map, but did not" % (edge.type, source_target_key, target_source_key)) knowledge_map_key = "ERROR" edge_bindings.append( EdgeBinding(qg_id=knowledge_map_key, kg_id=edge.id)) # if knowledge_map_key not in edge_bindings: # edge_bindings[knowledge_map_key] = list() # edge_bindings_dict[knowledge_map_key] = dict() # if edge.id not in edge_bindings_dict[knowledge_map_key]: # edge_bindings[knowledge_map_key].append(edge.id) # edge_bindings_dict[knowledge_map_key][edge.id] = 1 # Create the result (potential answer) result1 = Result() result1.reasoner_id = "RTX" result1.description = description result1.confidence = confidence if suppress_bindings is False: result1.node_bindings = node_bindings result1.edge_bindings = edge_bindings # Create a KnowledgeGraph object and put the list of nodes and edges into it #### This is still legal, then is redundant with the knowledge map, so leave it out maybe knowledge_graph = KnowledgeGraph() knowledge_graph.nodes = node_objects knowledge_graph.edges = edge_objects if suppress_bindings is True: result1.result_graph = knowledge_graph # Put the first result (potential answer) into the message self._results.append(result1) self.message.results = self._results # Increment the number of results self._num_results += 1 if self._num_results == 1: self.message.code_description = "%s result found" % self._num_results else: self.message.code_description = "%s results found" % self._num_results #### Finish and return the result if requested if return_result: return result1 else: pass
def add_neighborhood_graph(self, nodes, edges, confidence=None): """ Populate the object model using networkx neo4j subgraph :param nodes: nodes in the subgraph (g.nodes(data=True)) :param edges: edges in the subgraph (g.edges(data=True)) :return: none """ # Get the relevant info from the nodes and edges node_keys = [] node_descriptions = dict() node_names = dict() node_labels = dict() node_uuids = dict() node_accessions = dict() node_iris = dict() node_uuids2iri = dict() node_curies = dict() node_uuids2curie = dict() for u, data in nodes: node_keys.append(u) if 'description' in data['properties']: node_descriptions[u] = data['properties']['description'] else: node_descriptions[u] = "None" node_names[u] = data['properties']['name'] node_labels[u] = list(set(data['labels']).difference({'Base'}))[0] node_uuids[u] = data['properties']['UUID'] node_accessions[u] = data['properties']['accession'] node_iris[u] = data['properties']['uri'] node_uuids2iri[data['properties'] ['UUID']] = data['properties']['uri'] curie_id = data['properties']['id'] if curie_id.split(':')[0].upper() == "CHEMBL": curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1] node_uuids2curie[data['properties']['UUID']] = curie_id node_curies[ u] = curie_id # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address) edge_keys = [] edge_types = dict() edge_source_db = dict() edge_source_iri = dict() edge_target_iri = dict() edge_source_curie = dict() edge_target_curie = dict() for u, v, data in edges: edge_keys.append((u, v)) edge_types[(u, v)] = data['type'] edge_source_db[(u, v)] = data['properties']['provided_by'] edge_source_iri[( u, v)] = node_uuids2iri[data['properties']['source_node_uuid']] edge_target_iri[( u, v)] = node_uuids2iri[data['properties']['target_node_uuid']] edge_source_curie[( u, v)] = node_uuids2curie[data['properties']['source_node_uuid']] edge_target_curie[( u, v)] = node_uuids2curie[data['properties']['target_node_uuid']] # For each node, populate the relevant information node_objects = [] node_iris_to_node_object = dict() for node_key in node_keys: node = Node() node.id = node_curies[node_key] node.type = [node_labels[node_key]] node.name = node_names[node_key] node.uri = node_iris[node_key] node.accession = node_accessions[node_key] node.description = node_descriptions[node_key] node_objects.append(node) node_iris_to_node_object[node_iris[node_key]] = node # for each edge, create an edge between them edge_objects = [] for u, v in edge_keys: edge = Edge() edge.type = edge_types[(u, v)] edge.source_id = node_iris_to_node_object[edge_source_iri[(u, v)]].id edge.target_id = node_iris_to_node_object[edge_target_iri[(u, v)]].id #edge.origin_list = [] #edge.origin_list.append(edge_source_db[(u, v)]) # TODO: check with eric if this really should be a list and if it should contain the source DB('s) edge.provided_by = edge_source_db[(u, v)] edge.is_defined_by = "RTX" edge_objects.append(edge) # Create the result (potential answer) result1 = Result() description = "This is a subgraph extracted from the full RTX knowledge graph, including nodes and edges relevant to the query." \ " This is not an answer to the query per se, but rather an opportunity to examine a small region of the RTX knowledge graph for further study. " \ "Formal answers to the query are below." result1.description = description result1.confidence = confidence result1.result_type = "neighborhood graph" # Create a KnowledgeGraph object and put the list of nodes and edges into it knowledge_graph = KnowledgeGraph() knowledge_graph.nodes = node_objects knowledge_graph.edges = edge_objects # Put the KnowledgeGraph into the first result (potential answer) result1.knowledge_graph = knowledge_graph # Put the first result (potential answer) into the message self._results.append(result1) self.message.results = self._results
def add_split_results(self, knowledge_graph, result_bindings): """ Populate the object model with the resulting raw knowledge_graph and result_bindings (initially from QueryGraphReasoner) :param nodes: knowledge_graph in native RTX KG dump :param edges: result_bindings in a native format from QueryGraphReasoner :return: none """ #### Add the knowledge_graph nodes regular_node_attributes = [ "id", "uri", "name", "description", "symbol" ] for input_node in knowledge_graph["nodes"]: node = Node() for attribute in regular_node_attributes: if attribute in input_node: setattr(node, attribute, input_node[attribute]) node.type = [input_node["category"]] #node.node_attributes = FIXME self.message.knowledge_graph.nodes.append(node) #### Add the knowledge_graph edges regular_edge_attributes = [ "id", "type", "relation", "source_id", "target_id", "is_defined_by", "defined_datetime", "provided_by", "weight", "evidence_type", "qualifiers", "negated", "", "" ] for input_edge in knowledge_graph["edges"]: edge = Edge() for attribute in regular_edge_attributes: if attribute in input_edge: setattr(edge, attribute, input_edge[attribute]) if "probability" in input_edge: edge.confidence = input_edge["probability"] # missing edge properties: defined_datetime, weight, publications, evidence_type, qualifiers, negated # extra edge properties: predicate, #edge.edge_attributes = FIXME #edge.publications = FIXME self.message.knowledge_graph.edges.append(edge) #### Add each result self.message.results = [] for input_result in result_bindings: result = Result() result.description = "No description available" result.essence = "?" #result.essence_type = "?" #result.row_data = "?" #result.score = 0 #result.score_name = "?" #result.score_direction = "?" result.confidence = 1.0 result.result_type = "individual query answer" result.reasoner_id = "RTX" result.result_graph = None result.node_bindings = input_result["nodes"] # #### Convert each binding value to a list because the viewer requires it # for binding in result.node_bindings: # result.node_bindings[binding] = [ result.node_bindings[binding] ] result.edge_bindings = input_result["edges"] self.message.results.append(result) #### Set the code_description n_results = len(result_bindings) plural = "s" if n_results == 1: plural = "" self.message.code_description = f"{n_results} result{plural} found" #### Complete normally return ()
def _create_results(kg: KnowledgeGraph, qg: QueryGraph, ignore_edge_direction: bool = True) -> List[Result]: result_graphs = [] kg_node_ids_by_qg_id = _get_kg_node_ids_by_qg_id(kg) kg_node_adj_map_by_qg_id = _get_kg_node_adj_map_by_qg_id( kg_node_ids_by_qg_id, kg, qg) kg_node_lookup = {node.id: node for node in kg.nodes} qnodes_in_order = _get_qnodes_in_order(qg) # First create result graphs with only the nodes filled out for qnode in qnodes_in_order: prior_qnode = qnodes_in_order[ qnodes_in_order.index(qnode) - 1] if qnodes_in_order.index(qnode) > 0 else None if not result_graphs: all_node_ids_in_kg_for_this_qnode_id = kg_node_ids_by_qg_id.get( qnode.id) if qnode.is_set: new_result_graph = _create_new_empty_result_graph(qg) new_result_graph['nodes'][ qnode.id] = all_node_ids_in_kg_for_this_qnode_id result_graphs.append(new_result_graph) else: for node_id in all_node_ids_in_kg_for_this_qnode_id: new_result_graph = _create_new_empty_result_graph(qg) new_result_graph['nodes'][qnode.id] = {node_id} result_graphs.append(new_result_graph) else: new_result_graphs = [] for result_graph in result_graphs: node_ids_for_prior_qnode_id = result_graph['nodes'][ prior_qnode.id] connected_node_ids = set() for node_id in node_ids_for_prior_qnode_id: connected_node_ids = connected_node_ids.union( kg_node_adj_map_by_qg_id[prior_qnode.id][node_id][ qnode.id]) if qnode.is_set: new_result_graph = _copy_result_graph(result_graph) new_result_graph['nodes'][qnode.id] = connected_node_ids new_result_graphs.append(new_result_graph) else: for node_id in connected_node_ids: new_result_graph = _copy_result_graph(result_graph) new_result_graph['nodes'][qnode.id] = {node_id} new_result_graphs.append(new_result_graph) result_graphs = new_result_graphs # Then add edges to our result graphs as appropriate edges_by_node_pairs = {qedge.id: dict() for qedge in qg.edges} for edge in kg.edges: if edge.qedge_ids: for qedge_id in edge.qedge_ids: edge_node_pair = f"{edge.source_id}--{edge.target_id}" if edge_node_pair not in edges_by_node_pairs[qedge_id]: edges_by_node_pairs[qedge_id][edge_node_pair] = set() edges_by_node_pairs[qedge_id][edge_node_pair].add(edge.id) if ignore_edge_direction: node_pair_in_other_direction = f"{edge.target_id}--{edge.source_id}" if node_pair_in_other_direction not in edges_by_node_pairs[ qedge_id]: edges_by_node_pairs[qedge_id][ node_pair_in_other_direction] = set() edges_by_node_pairs[qedge_id][ node_pair_in_other_direction].add(edge.id) for result_graph in result_graphs: for qedge_id in result_graph['edges']: qedge = _get_query_edge(qedge_id, qg) potential_nodes_1 = result_graph['nodes'][qedge.source_id] potential_nodes_2 = result_graph['nodes'][qedge.target_id] possible_node_pairs = set() for node_1 in potential_nodes_1: for node_2 in potential_nodes_2: node_pair_key = f"{node_1}--{node_2}" possible_node_pairs.add(node_pair_key) for node_pair in possible_node_pairs: ids_of_matching_edges = edges_by_node_pairs[qedge_id].get( node_pair, set()) result_graph['edges'][qedge_id] = result_graph['edges'][ qedge_id].union(ids_of_matching_edges) final_result_graphs = [ result_graph for result_graph in result_graphs if _result_graph_is_fulfilled(result_graph, qg) ] # Convert these into actual object model results results = [] for result_graph in final_result_graphs: node_bindings = [] for qnode_id, node_ids in result_graph['nodes'].items(): for node_id in node_ids: node_bindings.append(NodeBinding(qg_id=qnode_id, kg_id=node_id)) edge_bindings = [] for qedge_id, edge_ids in result_graph['edges'].items(): for edge_id in edge_ids: edge_bindings.append(EdgeBinding(qg_id=qedge_id, kg_id=edge_id)) result = Result(node_bindings=node_bindings, edge_bindings=edge_bindings) # Fill out the essence for the result essence_qnode_id = _get_essence_node_for_qg(qg) essence_qnode = _get_query_node(essence_qnode_id, qg) essence_kg_node_id_set = result_graph['nodes'].get( essence_qnode_id, set()) if len(essence_kg_node_id_set) == 1: essence_kg_node_id = next(iter(essence_kg_node_id_set)) essence_kg_node = kg_node_lookup[essence_kg_node_id] result.essence = essence_kg_node.name if result.essence is None: result.essence = essence_kg_node_id assert result.essence is not None if essence_kg_node.symbol is not None: result.essence += " (" + str(essence_kg_node.symbol) + ")" result.essence_type = str( essence_qnode.type) if essence_qnode else None elif len(essence_kg_node_id_set) == 0: result.essence = cast(str, None) result.essence_type = cast(str, None) else: raise ValueError( f"Result contains more than one node that is a candidate for the essence: {essence_kg_node_id_set}" ) # Programmatically generating an informative description for each result # seems difficult, but having something non-None is required by the # database. Just put in a placeholder for now, as is done by the # QueryGraphReasoner result.description = "No description available" # see issue 642 results.append(result) return results
def answer(self, entity, use_json=False): """ Answer a question of the type "What is X" but is general: :param entity: KG neo4j node name (eg "carbetocin") :param use_json: If the answer should be in Translator standardized API output format :return: a description and type of the node """ #### See if this entity is in the KG via the index eprint("Looking up '%s' in KgNodeIndex" % entity) kgNodeIndex = KGNodeIndex() curies = kgNodeIndex.get_curies(entity) #### If not in the KG, then return no information if not curies: if not use_json: return None else: error_code = "TermNotFound" error_message = "This concept is not in our knowledge graph" response = FormatOutput.FormatResponse(0) response.add_error_message(error_code, error_message) return response.message # Get label/kind of node the source is eprint("Getting properties for '%s'" % curies[0]) properties = RU.get_node_properties(curies[0]) eprint("Properties are:") eprint(properties) #### By default, return the results just as a plain simple list of data structures if not use_json: return properties #### Or, if requested, format the output as the standardized API output format else: #### Create a stub Message object response = FormatOutput.FormatResponse(0) response.message.table_column_names = [ "id", "type", "name", "description", "uri" ] response.message.code_description = None #### Create a Node object and fill it node1 = Node() node1.id = properties["id"] node1.uri = properties["uri"] node1.type = [properties["category"]] node1.name = properties["name"] node1.description = properties["description"] #### Create the first result (potential answer) result1 = Result() result1.id = "http://arax.ncats.io/api/v1/result/0000" result1.description = "The term %s is in our knowledge graph and is defined as %s" % ( properties["name"], properties["description"]) result1.confidence = 1.0 result1.essence = properties["name"] result1.essence_type = properties["category"] node_types = ",".join(node1.type) result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ] #### Create a KnowledgeGraph object and put the list of nodes and edges into it result_graph = KnowledgeGraph() result_graph.nodes = [node1] result_graph.edges = [] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the message results = [result1] response.message.results = results #### Also put the union of all result_graph components into the top Message KnowledgeGraph #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result response.message.knowledge_graph = result_graph #### Also manufacture a query_graph post hoc qnode1 = QNode() qnode1.id = "n00" qnode1.curie = properties["id"] qnode1.type = None query_graph = QueryGraph() query_graph.nodes = [qnode1] query_graph.edges = [] response.message.query_graph = query_graph #### Create the corresponding knowledge_map node_binding = NodeBinding(qg_id="n00", kg_id=properties["id"]) result1.node_bindings = [node_binding] result1.edge_bindings = [] #eprint(response.message) return response.message
def queryTerm(self, term): method = "queryTerm" attributes = self.findTermAttributesAndTypeByName(term) message = self.createMessage() if ( attributes["status"] == 'OK' ): message.code_description = "1 result found" message.table_column_names = [ "id", "type", "name", "description", "uri" ] #### Create a Node object and fill it node1 = Node() node1.id = "MESH:" + attributes["id"] node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"] node1.type = [ attributes["type"] ] node1.name = attributes["name"] node1.description = attributes["description"] #### Create the first result (potential answer) result1 = Result() result1.id = "http://rtx.ncats.io/api/v1/result/0000" result1.description = "The term " + attributes["name"] + " refers to " + attributes["description"] result1.confidence = 1.0 result1.essence = attributes["name"] result1.essence_type = attributes["type"] node_types = ",".join(node1.type) result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ] #### Create a KnowledgeGraph object and put the list of nodes and edges into it result_graph = KnowledgeGraph() result_graph.nodes = [ node1 ] #### Put the ResultGraph into the first result (potential answer) result1.result_graph = result_graph #### Put the first result (potential answer) into the message results = [ result1 ] message.results = results #### Also put the union of all result_graph components into the top Message KnowledgeGraph #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result message.knowledge_graph = result_graph #### Also manufacture a query_graph post hoc qnode1 = QNode() qnode1.node_id = "n00" qnode1.curie = "MESH:" + attributes["id"] qnode1.type = None query_graph = QueryGraph() query_graph.nodes = [ qnode1 ] query_graph.edges = [] message.query_graph = query_graph #### Create the corresponding knowledge_map knowledge_map = { "n00": "MESH:" + attributes["id"] } result1.knowledge_map = knowledge_map else: message.message_code = "TermNotFound" message.code_description = "Unable to find this term in MeSH. No further information is available at this time." message.id = None return message