Exemple #1
0
 def add_text(self, description, confidence=1):
     result1 = Result()
     result1.description = description
     result1.confidence = confidence
     self._results.append(result1)
     self.message.results = self._results
     # Increment the number of results
     self._num_results += 1
     if self._num_results == 1:
         self.message.code_description = "%s result found" % self._num_results
     else:
         self.message.code_description = "%s results found" % self._num_results
Exemple #2
0
    def add_subgraph(self,
                     nodes,
                     edges,
                     description,
                     confidence,
                     return_result=False,
                     suppress_bindings=False):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        edge_ids = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]
            edge_ids[(u, v)] = data['properties']['provided_by']  # FIXME

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = [node_labels[node_key]]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

            #### Add this node to the master knowledge graph
            if node.id not in self._node_ids:
                self.message.knowledge_graph.nodes.append(node)
                self._node_ids[node.id] = node.type[
                    0]  # Just take the first of potentially several FIXME

        #### Create the bindings lists
        node_bindings = list()
        edge_bindings = list()

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            #edge.id is set below when building the bindings
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            edge_objects.append(edge)
            #edge.attribute_list
            #edge.confidence
            #edge.evidence_type
            edge.is_defined_by = "RTX"
            edge.provided_by = edge_source_db[(u, v)]
            #edge.publications
            #edge.qualifiers
            #edge.relation
            #edge.source_id
            #edge.target_id
            #edge.type

            #### Add this edge to the master knowledge graph
            edge_str = "%s -%s- %s" % (edge.source_id, edge.type,
                                       edge.target_id)
            if edge_str not in self._edge_ids:
                self.message.knowledge_graph.edges.append(edge)
                edge.id = "%d" % self._edge_counter
                self._edge_ids[edge_str] = edge.id
                self._edge_counter += 1
            else:
                edge.id = self._edge_ids[edge_str]

            #### Try to figure out how the source fits into the query_graph for the bindings
            source_type = self._node_ids[edge.source_id]
            if edge.source_id in self._type_map:
                source_knowledge_map_key = self._type_map[edge.source_id]
            else:
                source_knowledge_map_key = self._type_map[source_type]
            if not source_knowledge_map_key:
                eprint(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % source_type)
                raise Exception(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % source_type)

            node_bindings.append(
                NodeBinding(qg_id=source_knowledge_map_key,
                            kg_id=edge.source_id))
            #			if source_knowledge_map_key not in node_bindings:
            #				node_bindings[source_knowledge_map_key] = list()
            #				node_bindings_dict[source_knowledge_map_key] = dict()
            #			if edge.source_id not in node_bindings_dict[source_knowledge_map_key]:
            #				node_bindings[source_knowledge_map_key].append(edge.source_id)
            #				node_bindings_dict[source_knowledge_map_key][edge.source_id] = 1

            #### Try to figure out how the target fits into the query_graph for the knowledge map
            target_type = self._node_ids[edge.target_id]
            if edge.target_id in self._type_map:
                target_knowledge_map_key = self._type_map[edge.target_id]
            else:
                target_knowledge_map_key = self._type_map[target_type]
            if not target_knowledge_map_key:
                eprint(
                    "ERROR: Expected to find '%s' in the response._type_map, but did not"
                    % target_type)
                raise Exception(
                    "Expected to find '%s' in the response._type_map, but did not"
                    % target_type)

            node_bindings.append(
                NodeBinding(qg_id=target_knowledge_map_key,
                            kg_id=edge.target_id))
            #			if target_knowledge_map_key not in node_bindings:
            #				node_bindings[target_knowledge_map_key] = list()
            #				node_bindings_dict[target_knowledge_map_key] = dict()
            #			if edge.target_id not in node_bindings_dict[target_knowledge_map_key]:
            #				node_bindings[target_knowledge_map_key].append(edge.target_id)
            #				node_bindings_dict[target_knowledge_map_key][edge.target_id] = 1

            #### Try to figure out how the edge fits into the query_graph for the knowledge map
            source_target_key = "e" + source_knowledge_map_key + "-" + target_knowledge_map_key
            target_source_key = "e" + target_knowledge_map_key + "-" + source_knowledge_map_key
            if edge.type in self._type_map:
                knowledge_map_key = self._type_map[edge.type]
            elif source_target_key in self._type_map:
                knowledge_map_key = source_target_key
            elif target_source_key in self._type_map:
                knowledge_map_key = target_source_key
            else:
                eprint(
                    "ERROR: Expected to find '%s' or '%s' or '%s' in the response._type_map, but did not"
                    % (edge.type, source_target_key, target_source_key))
                knowledge_map_key = "ERROR"

            edge_bindings.append(
                EdgeBinding(qg_id=knowledge_map_key, kg_id=edge.id))


#			if knowledge_map_key not in edge_bindings:
#				edge_bindings[knowledge_map_key] = list()
#				edge_bindings_dict[knowledge_map_key] = dict()
#			if edge.id not in edge_bindings_dict[knowledge_map_key]:
#				edge_bindings[knowledge_map_key].append(edge.id)
#				edge_bindings_dict[knowledge_map_key][edge.id] = 1

# Create the result (potential answer)
        result1 = Result()
        result1.reasoner_id = "RTX"
        result1.description = description
        result1.confidence = confidence
        if suppress_bindings is False:
            result1.node_bindings = node_bindings
            result1.edge_bindings = edge_bindings

        # Create a KnowledgeGraph object and put the list of nodes and edges into it
        #### This is still legal, then is redundant with the knowledge map, so leave it out maybe
        knowledge_graph = KnowledgeGraph()
        knowledge_graph.nodes = node_objects
        knowledge_graph.edges = edge_objects
        if suppress_bindings is True:
            result1.result_graph = knowledge_graph

        # Put the first result (potential answer) into the message
        self._results.append(result1)
        self.message.results = self._results

        # Increment the number of results
        self._num_results += 1
        if self._num_results == 1:
            self.message.code_description = "%s result found" % self._num_results
        else:
            self.message.code_description = "%s results found" % self._num_results

        #### Finish and return the result if requested
        if return_result:
            return result1
        else:
            pass
Exemple #3
0
    def add_neighborhood_graph(self, nodes, edges, confidence=None):
        """
		Populate the object model using networkx neo4j subgraph
		:param nodes: nodes in the subgraph (g.nodes(data=True))
		:param edges: edges in the subgraph (g.edges(data=True))
		:return: none
		"""

        # Get the relevant info from the nodes and edges
        node_keys = []
        node_descriptions = dict()
        node_names = dict()
        node_labels = dict()
        node_uuids = dict()
        node_accessions = dict()
        node_iris = dict()
        node_uuids2iri = dict()
        node_curies = dict()
        node_uuids2curie = dict()
        for u, data in nodes:
            node_keys.append(u)
            if 'description' in data['properties']:
                node_descriptions[u] = data['properties']['description']
            else:
                node_descriptions[u] = "None"
            node_names[u] = data['properties']['name']
            node_labels[u] = list(set(data['labels']).difference({'Base'}))[0]
            node_uuids[u] = data['properties']['UUID']
            node_accessions[u] = data['properties']['accession']
            node_iris[u] = data['properties']['uri']
            node_uuids2iri[data['properties']
                           ['UUID']] = data['properties']['uri']
            curie_id = data['properties']['id']
            if curie_id.split(':')[0].upper() == "CHEMBL":
                curie_id = "CHEMBL:CHEMBL" + curie_id.split(':')[1]
            node_uuids2curie[data['properties']['UUID']] = curie_id
            node_curies[
                u] = curie_id  # These are the actual CURIE IDS eg UBERON:00000941 (uri is the web address)

        edge_keys = []
        edge_types = dict()
        edge_source_db = dict()
        edge_source_iri = dict()
        edge_target_iri = dict()
        edge_source_curie = dict()
        edge_target_curie = dict()
        for u, v, data in edges:
            edge_keys.append((u, v))
            edge_types[(u, v)] = data['type']
            edge_source_db[(u, v)] = data['properties']['provided_by']
            edge_source_iri[(
                u, v)] = node_uuids2iri[data['properties']['source_node_uuid']]
            edge_target_iri[(
                u, v)] = node_uuids2iri[data['properties']['target_node_uuid']]
            edge_source_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['source_node_uuid']]
            edge_target_curie[(
                u,
                v)] = node_uuids2curie[data['properties']['target_node_uuid']]

        # For each node, populate the relevant information
        node_objects = []
        node_iris_to_node_object = dict()
        for node_key in node_keys:
            node = Node()
            node.id = node_curies[node_key]
            node.type = [node_labels[node_key]]
            node.name = node_names[node_key]
            node.uri = node_iris[node_key]
            node.accession = node_accessions[node_key]
            node.description = node_descriptions[node_key]
            node_objects.append(node)
            node_iris_to_node_object[node_iris[node_key]] = node

        # for each edge, create an edge between them
        edge_objects = []
        for u, v in edge_keys:
            edge = Edge()
            edge.type = edge_types[(u, v)]
            edge.source_id = node_iris_to_node_object[edge_source_iri[(u,
                                                                       v)]].id
            edge.target_id = node_iris_to_node_object[edge_target_iri[(u,
                                                                       v)]].id
            #edge.origin_list = []
            #edge.origin_list.append(edge_source_db[(u, v)])  # TODO: check with eric if this really should be a list and if it should contain the source DB('s)
            edge.provided_by = edge_source_db[(u, v)]
            edge.is_defined_by = "RTX"
            edge_objects.append(edge)

        # Create the result (potential answer)
        result1 = Result()
        description = "This is a subgraph extracted from the full RTX knowledge graph, including nodes and edges relevant to the query." \
            " This is not an answer to the query per se, but rather an opportunity to examine a small region of the RTX knowledge graph for further study. " \
            "Formal answers to the query are below."
        result1.description = description
        result1.confidence = confidence
        result1.result_type = "neighborhood graph"

        # Create a KnowledgeGraph object and put the list of nodes and edges into it
        knowledge_graph = KnowledgeGraph()
        knowledge_graph.nodes = node_objects
        knowledge_graph.edges = edge_objects

        # Put the KnowledgeGraph into the first result (potential answer)
        result1.knowledge_graph = knowledge_graph

        # Put the first result (potential answer) into the message
        self._results.append(result1)
        self.message.results = self._results
Exemple #4
0
    def add_split_results(self, knowledge_graph, result_bindings):
        """
		Populate the object model with the resulting raw knowledge_graph and result_bindings (initially from QueryGraphReasoner)
		:param nodes: knowledge_graph in native RTX KG dump
		:param edges: result_bindings in a native format from QueryGraphReasoner
		:return: none
		"""

        #### Add the knowledge_graph nodes
        regular_node_attributes = [
            "id", "uri", "name", "description", "symbol"
        ]
        for input_node in knowledge_graph["nodes"]:
            node = Node()
            for attribute in regular_node_attributes:
                if attribute in input_node:
                    setattr(node, attribute, input_node[attribute])
            node.type = [input_node["category"]]
            #node.node_attributes = FIXME
            self.message.knowledge_graph.nodes.append(node)

        #### Add the knowledge_graph edges
        regular_edge_attributes = [
            "id", "type", "relation", "source_id", "target_id",
            "is_defined_by", "defined_datetime", "provided_by", "weight",
            "evidence_type", "qualifiers", "negated", "", ""
        ]
        for input_edge in knowledge_graph["edges"]:
            edge = Edge()
            for attribute in regular_edge_attributes:
                if attribute in input_edge:
                    setattr(edge, attribute, input_edge[attribute])
            if "probability" in input_edge:
                edge.confidence = input_edge["probability"]
            # missing edge properties: defined_datetime, weight, publications, evidence_type, qualifiers, negated
            # extra edge properties: predicate,
            #edge.edge_attributes = FIXME
            #edge.publications = FIXME
            self.message.knowledge_graph.edges.append(edge)

        #### Add each result
        self.message.results = []
        for input_result in result_bindings:
            result = Result()
            result.description = "No description available"
            result.essence = "?"
            #result.essence_type = "?"
            #result.row_data = "?"
            #result.score = 0
            #result.score_name = "?"
            #result.score_direction = "?"
            result.confidence = 1.0
            result.result_type = "individual query answer"
            result.reasoner_id = "RTX"
            result.result_graph = None
            result.node_bindings = input_result["nodes"]
            #			#### Convert each binding value to a list because the viewer requires it
            #			for binding in result.node_bindings:
            #				result.node_bindings[binding] = [ result.node_bindings[binding] ]
            result.edge_bindings = input_result["edges"]
            self.message.results.append(result)

        #### Set the code_description
        n_results = len(result_bindings)
        plural = "s"
        if n_results == 1: plural = ""
        self.message.code_description = f"{n_results} result{plural} found"

        #### Complete normally
        return ()
def _create_results(kg: KnowledgeGraph,
                    qg: QueryGraph,
                    ignore_edge_direction: bool = True) -> List[Result]:
    result_graphs = []
    kg_node_ids_by_qg_id = _get_kg_node_ids_by_qg_id(kg)
    kg_node_adj_map_by_qg_id = _get_kg_node_adj_map_by_qg_id(
        kg_node_ids_by_qg_id, kg, qg)
    kg_node_lookup = {node.id: node for node in kg.nodes}
    qnodes_in_order = _get_qnodes_in_order(qg)

    # First create result graphs with only the nodes filled out
    for qnode in qnodes_in_order:
        prior_qnode = qnodes_in_order[
            qnodes_in_order.index(qnode) -
            1] if qnodes_in_order.index(qnode) > 0 else None
        if not result_graphs:
            all_node_ids_in_kg_for_this_qnode_id = kg_node_ids_by_qg_id.get(
                qnode.id)
            if qnode.is_set:
                new_result_graph = _create_new_empty_result_graph(qg)
                new_result_graph['nodes'][
                    qnode.id] = all_node_ids_in_kg_for_this_qnode_id
                result_graphs.append(new_result_graph)
            else:
                for node_id in all_node_ids_in_kg_for_this_qnode_id:
                    new_result_graph = _create_new_empty_result_graph(qg)
                    new_result_graph['nodes'][qnode.id] = {node_id}
                    result_graphs.append(new_result_graph)
        else:
            new_result_graphs = []
            for result_graph in result_graphs:
                node_ids_for_prior_qnode_id = result_graph['nodes'][
                    prior_qnode.id]
                connected_node_ids = set()
                for node_id in node_ids_for_prior_qnode_id:
                    connected_node_ids = connected_node_ids.union(
                        kg_node_adj_map_by_qg_id[prior_qnode.id][node_id][
                            qnode.id])
                if qnode.is_set:
                    new_result_graph = _copy_result_graph(result_graph)
                    new_result_graph['nodes'][qnode.id] = connected_node_ids
                    new_result_graphs.append(new_result_graph)
                else:
                    for node_id in connected_node_ids:
                        new_result_graph = _copy_result_graph(result_graph)
                        new_result_graph['nodes'][qnode.id] = {node_id}
                        new_result_graphs.append(new_result_graph)
            result_graphs = new_result_graphs

    # Then add edges to our result graphs as appropriate
    edges_by_node_pairs = {qedge.id: dict() for qedge in qg.edges}
    for edge in kg.edges:
        if edge.qedge_ids:
            for qedge_id in edge.qedge_ids:
                edge_node_pair = f"{edge.source_id}--{edge.target_id}"
                if edge_node_pair not in edges_by_node_pairs[qedge_id]:
                    edges_by_node_pairs[qedge_id][edge_node_pair] = set()
                edges_by_node_pairs[qedge_id][edge_node_pair].add(edge.id)
                if ignore_edge_direction:
                    node_pair_in_other_direction = f"{edge.target_id}--{edge.source_id}"
                    if node_pair_in_other_direction not in edges_by_node_pairs[
                            qedge_id]:
                        edges_by_node_pairs[qedge_id][
                            node_pair_in_other_direction] = set()
                    edges_by_node_pairs[qedge_id][
                        node_pair_in_other_direction].add(edge.id)
    for result_graph in result_graphs:
        for qedge_id in result_graph['edges']:
            qedge = _get_query_edge(qedge_id, qg)
            potential_nodes_1 = result_graph['nodes'][qedge.source_id]
            potential_nodes_2 = result_graph['nodes'][qedge.target_id]
            possible_node_pairs = set()
            for node_1 in potential_nodes_1:
                for node_2 in potential_nodes_2:
                    node_pair_key = f"{node_1}--{node_2}"
                    possible_node_pairs.add(node_pair_key)
            for node_pair in possible_node_pairs:
                ids_of_matching_edges = edges_by_node_pairs[qedge_id].get(
                    node_pair, set())
                result_graph['edges'][qedge_id] = result_graph['edges'][
                    qedge_id].union(ids_of_matching_edges)

    final_result_graphs = [
        result_graph for result_graph in result_graphs
        if _result_graph_is_fulfilled(result_graph, qg)
    ]

    # Convert these into actual object model results
    results = []
    for result_graph in final_result_graphs:
        node_bindings = []
        for qnode_id, node_ids in result_graph['nodes'].items():
            for node_id in node_ids:
                node_bindings.append(NodeBinding(qg_id=qnode_id,
                                                 kg_id=node_id))
        edge_bindings = []
        for qedge_id, edge_ids in result_graph['edges'].items():
            for edge_id in edge_ids:
                edge_bindings.append(EdgeBinding(qg_id=qedge_id,
                                                 kg_id=edge_id))
        result = Result(node_bindings=node_bindings,
                        edge_bindings=edge_bindings)

        # Fill out the essence for the result
        essence_qnode_id = _get_essence_node_for_qg(qg)
        essence_qnode = _get_query_node(essence_qnode_id, qg)
        essence_kg_node_id_set = result_graph['nodes'].get(
            essence_qnode_id, set())
        if len(essence_kg_node_id_set) == 1:
            essence_kg_node_id = next(iter(essence_kg_node_id_set))
            essence_kg_node = kg_node_lookup[essence_kg_node_id]
            result.essence = essence_kg_node.name
            if result.essence is None:
                result.essence = essence_kg_node_id
            assert result.essence is not None
            if essence_kg_node.symbol is not None:
                result.essence += " (" + str(essence_kg_node.symbol) + ")"
            result.essence_type = str(
                essence_qnode.type) if essence_qnode else None
        elif len(essence_kg_node_id_set) == 0:
            result.essence = cast(str, None)
            result.essence_type = cast(str, None)
        else:
            raise ValueError(
                f"Result contains more than one node that is a candidate for the essence: {essence_kg_node_id_set}"
            )

        # Programmatically generating an informative description for each result
        # seems difficult, but having something non-None is required by the
        # database.  Just put in a placeholder for now, as is done by the
        # QueryGraphReasoner
        result.description = "No description available"  # see issue 642

        results.append(result)

    return results
Exemple #6
0
    def answer(self, entity, use_json=False):
        """
		Answer a question of the type "What is X" but is general:
		:param entity: KG neo4j node name (eg "carbetocin")
		:param use_json: If the answer should be in Translator standardized API output format
		:return: a description and type of the node
		"""

        #### See if this entity is in the KG via the index
        eprint("Looking up '%s' in KgNodeIndex" % entity)
        kgNodeIndex = KGNodeIndex()
        curies = kgNodeIndex.get_curies(entity)

        #### If not in the KG, then return no information
        if not curies:
            if not use_json:
                return None
            else:
                error_code = "TermNotFound"
                error_message = "This concept is not in our knowledge graph"
                response = FormatOutput.FormatResponse(0)
                response.add_error_message(error_code, error_message)
                return response.message

        # Get label/kind of node the source is
        eprint("Getting properties for '%s'" % curies[0])
        properties = RU.get_node_properties(curies[0])
        eprint("Properties are:")
        eprint(properties)

        #### By default, return the results just as a plain simple list of data structures
        if not use_json:
            return properties

        #### Or, if requested, format the output as the standardized API output format
        else:
            #### Create a stub Message object
            response = FormatOutput.FormatResponse(0)
            response.message.table_column_names = [
                "id", "type", "name", "description", "uri"
            ]
            response.message.code_description = None

            #### Create a Node object and fill it
            node1 = Node()
            node1.id = properties["id"]
            node1.uri = properties["uri"]
            node1.type = [properties["category"]]
            node1.name = properties["name"]
            node1.description = properties["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://arax.ncats.io/api/v1/result/0000"
            result1.description = "The term %s is in our knowledge graph and is defined as %s" % (
                properties["name"], properties["description"])
            result1.confidence = 1.0
            result1.essence = properties["name"]
            result1.essence_type = properties["category"]
            node_types = ",".join(node1.type)
            result1.row_data = [
                node1.id, node_types, node1.name, node1.description, node1.uri
            ]

            #### Create a KnowledgeGraph object and put the list of nodes and edges into it
            result_graph = KnowledgeGraph()
            result_graph.nodes = [node1]
            result_graph.edges = []

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the message
            results = [result1]
            response.message.results = results

            #### Also put the union of all result_graph components into the top Message KnowledgeGraph
            #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result
            response.message.knowledge_graph = result_graph

            #### Also manufacture a query_graph post hoc
            qnode1 = QNode()
            qnode1.id = "n00"
            qnode1.curie = properties["id"]
            qnode1.type = None
            query_graph = QueryGraph()
            query_graph.nodes = [qnode1]
            query_graph.edges = []
            response.message.query_graph = query_graph

            #### Create the corresponding knowledge_map
            node_binding = NodeBinding(qg_id="n00", kg_id=properties["id"])
            result1.node_bindings = [node_binding]
            result1.edge_bindings = []

            #eprint(response.message)
            return response.message
Exemple #7
0
    def queryTerm(self, term):
        method = "queryTerm"
        attributes = self.findTermAttributesAndTypeByName(term)
        message = self.createMessage()
        if ( attributes["status"] == 'OK' ):
            message.code_description = "1 result found"
            message.table_column_names = [ "id", "type", "name", "description", "uri" ]

            #### Create a Node object and fill it
            node1 = Node()
            node1.id = "MESH:" + attributes["id"]
            node1.uri = "http://purl.obolibrary.org/obo/MESH_" + attributes["id"]
            node1.type = [ attributes["type"] ]
            node1.name = attributes["name"]
            node1.description = attributes["description"]

            #### Create the first result (potential answer)
            result1 = Result()
            result1.id = "http://rtx.ncats.io/api/v1/result/0000"
            result1.description = "The term " + attributes["name"] + " refers to " + attributes["description"]
            result1.confidence = 1.0
            result1.essence = attributes["name"]
            result1.essence_type = attributes["type"]
            node_types = ",".join(node1.type)
            result1.row_data = [ node1.id, node_types, node1.name, node1.description, node1.uri ]

            #### Create a KnowledgeGraph object and put the list of nodes and edges into it
            result_graph = KnowledgeGraph()
            result_graph.nodes = [ node1 ]

            #### Put the ResultGraph into the first result (potential answer)
            result1.result_graph = result_graph

            #### Put the first result (potential answer) into the message
            results = [ result1 ]
            message.results = results

            #### Also put the union of all result_graph components into the top Message KnowledgeGraph
            #### Normally the knowledge_graph will be much more complex than this, but take a shortcut for this single-node result
            message.knowledge_graph = result_graph

            #### Also manufacture a query_graph post hoc
            qnode1 = QNode()
            qnode1.node_id = "n00"
            qnode1.curie = "MESH:" + attributes["id"]
            qnode1.type = None
            query_graph = QueryGraph()
            query_graph.nodes = [ qnode1 ]
            query_graph.edges = []
            message.query_graph = query_graph

            #### Create the corresponding knowledge_map
            knowledge_map = { "n00": "MESH:" + attributes["id"] }
            result1.knowledge_map = knowledge_map

        else:
            message.message_code = "TermNotFound"
            message.code_description = "Unable to find this term in MeSH. No further information is available at this time."
            message.id = None

        return message