Exemple #1
0
def proto_0303(theABF):
    m1 = 4.15625
    abf = ABF(theABF)
    abf.log.info("analyzing as a halorhodopsin (2s pulse)")
    plt.figure(figsize=(8, 8))
    for sweep in abf.setsweeps():
        plt.plot(abf.sweepX2, abf.sweepY + 100 * sweep, color='b', alpha=.5)
    if abf.ID.startswith("17717"):
        plt.axvspan(m1, m1 + 2, alpha=.2, color='g')
    else:
        plt.axvspan(m1, m1 + 1, alpha=.2, color='g')
    plt.margins(0, .01)
    plt.tight_layout()
    frameAndSave(abf, "halo")
    plt.close('all')

    plt.figure(figsize=(8, 8))
    for sweep in abf.setsweeps():
        plt.plot(abf.sweepX2, abf.sweepY, color='b', alpha=.2)
    if abf.ID.startswith("17717"):
        plt.axvspan(m1, m1 + 2, alpha=.2, color='g')
    else:
        plt.axvspan(m1, m1 + 1, alpha=.2, color='g')
    plt.margins(0, .01)
    plt.tight_layout()
    frameAndSave(abf, "halo2")
    plt.close('all')
Exemple #2
0
def proto_avgRange(theABF, m1=None, m2=None):
    """experiment: generic VC time course experiment."""

    abf = ABF(theABF)
    abf.log.info("analyzing as a fast IV")
    if m1 is None:
        m1 = abf.sweepLength
    if m2 is None:
        m2 = abf.sweepLength

    I1 = int(abf.pointsPerSec * m1)
    I2 = int(abf.pointsPerSec * m2)

    Ts = np.arange(abf.sweeps) * abf.sweepInterval
    Yav = np.empty(abf.sweeps) * np.nan  # average
    Ysd = np.empty(abf.sweeps) * np.nan  # standard deviation
    #Yar=np.empty(abf.sweeps)*np.nan # area

    for sweep in abf.setsweeps():
        Yav[sweep] = np.average(abf.sweepY[I1:I2])
        Ysd[sweep] = np.std(abf.sweepY[I1:I2])
        #Yar[sweep]=np.sum(abf.sweepY[I1:I2])/(I2*I1)-Yav[sweep]

    plot = ABFplot(abf)
    plt.figure(figsize=(SQUARESIZE * 2, SQUARESIZE / 2))

    plt.subplot(131)
    plot.title = "first sweep"
    plot.figure_sweep(0)
    plt.title("First Sweep\n(shaded measurement range)")
    plt.axvspan(m1, m2, color='r', ec=None, alpha=.1)

    plt.subplot(132)
    plt.grid(alpha=.5)
    for i, t in enumerate(abf.comment_times):
        plt.axvline(t / 60, color='r', alpha=.5, lw=2, ls='--')
    plt.plot(Ts / 60, Yav, '.', alpha=.75)
    plt.title("Range Average\nTAGS: %s" % (", ".join(abf.comment_tags)))
    plt.ylabel(abf.units2)
    plt.xlabel("minutes")
    plt.margins(0, .1)

    plt.subplot(133)
    plt.grid(alpha=.5)
    for i, t in enumerate(abf.comment_times):
        plt.axvline(t / 60, color='r', alpha=.5, lw=2, ls='--')
    plt.plot(Ts / 60, Ysd, '.', alpha=.5, color='g', ms=15, mew=0)
    #plt.fill_between(Ts/60,Ysd*0,Ysd,lw=0,alpha=.5,color='g')
    plt.title("Range Standard Deviation\nTAGS: %s" %
              (", ".join(abf.comment_tags)))
    plt.ylabel(abf.units2)
    plt.xlabel("minutes")
    plt.margins(0, .1)
    plt.axis([None, None, 0, np.percentile(Ysd, 99) * 1.25])

    plt.tight_layout()
    frameAndSave(abf, "sweep vs average", "experiment")
    plt.close('all')
Exemple #3
0
def BLS_average_stack(theABF):
    abf = ABF(theABF)
    T1, T2 = abf.epochTimes(2)
    padding = .1
    if abf.units == "mV":
        padding = .25
    Tdiff = max([T2 - T1, padding])
    Tdiff = min([T1, padding])
    X1, X2 = T1 - Tdiff, T2 + Tdiff
    I1, I2 = X1 * abf.pointsPerSec, X2 * abf.pointsPerSec

    plt.figure(figsize=(10, 10))
    chunks = np.empty((int(abf.sweeps), int(I2 - I1)))
    Xs = np.array(abf.sweepX2[int(I1):int(I2)])
    for sweep in abf.setsweeps():
        chunks[sweep] = abf.sweepY[int(I1):int(I2)]
        plt.subplot(211)
        plt.plot(Xs, chunks[sweep], alpha=.2, color='.5', lw=2)
        plt.subplot(212)
        if abf.units == 'pA':
            plt.plot(Xs,
                     chunks[sweep] + 100 * (abf.sweeps - sweep),
                     alpha=.5,
                     color='b',
                     lw=2)  # if VC, focus on BLS
        else:
            plt.plot(abf.sweepX2,
                     abf.sweepY + 100 * (abf.sweeps - sweep),
                     alpha=.5,
                     color='b',
                     lw=2)  # if IC, show full sweep

    plt.subplot(211)
    plt.plot(Xs, np.average(chunks, axis=0), alpha=.5, lw=2)
    plt.title("%s.abf - BLS - average of %d sweeps" % (abf.ID, abf.sweeps))
    plt.ylabel(abf.units2)
    plt.axvspan(T1, T2, alpha=.2, color='y', lw=0)
    plt.margins(0, .1)

    plt.subplot(212)
    plt.xlabel("time (sec)")
    plt.ylabel("stacked sweeps")
    plt.axvspan(T1, T2, alpha=.2, color='y', lw=0)
    if abf.units == 'mV':
        plt.axvline(T1, color='r', alpha=.2, lw=3)


#        plt.axvline(T2,color='r',alpha=.2,lw=3)
    plt.margins(0, .1)

    plt.tight_layout()
    frameAndSave(abf, "BLS", "experiment")
    plt.close('all')
Exemple #4
0
def proto_0304(theABF):
    """protocol: repeated IC steps."""

    abf = ABF(theABF)
    abf.log.info("analyzing as repeated current-clamp step")

    # prepare for AP analysis
    ap = AP(abf)

    # calculate rest potential
    avgVoltagePerSweep = []
    times = []
    for sweep in abf.setsweeps():
        avgVoltagePerSweep.append(abf.average(0, 3))
        times.append(abf.sweepStart / 60)

    # detect only step APs
    M1, M2 = 3.15, 4.15
    ap.detect_time1, ap.detect_time2 = M1, M2
    ap.detect()
    apsPerSweepCos = [len(x) for x in ap.get_bySweep()]

    # detect all APs
    M1, M2 = 0, 10
    ap.detect_time1, ap.detect_time2 = M1, M2
    ap.detect()
    apsPerSweepRamp = [len(x) for x in ap.get_bySweep()]

    # make the plot of APs and stuff
    plt.figure(figsize=(8, 8))

    plt.subplot(311)
    plt.grid(ls='--', alpha=.5)
    plt.plot(times, avgVoltagePerSweep, '.-')
    plt.ylabel("Rest Potential (mV)")
    comment_lines(abf)

    plt.subplot(312)
    plt.grid(ls='--', alpha=.5)
    plt.plot(times, apsPerSweepCos, '.-')
    plt.ylabel("APs in Step (#)")
    comment_lines(abf)

    plt.subplot(313)
    plt.grid(ls='--', alpha=.5)
    plt.plot(times, apsPerSweepRamp, '.-')
    plt.ylabel("APs in Sweep (#)")
    comment_lines(abf)

    plt.tight_layout()

    frameAndSave(abf, "cos ramp")
    plt.close('all')
Exemple #5
0
def proto_gain(theABF, stepSize=25, startAt=-100):
    """protocol: gain function of some sort. step size and start at are pA."""
    abf = ABF(theABF)
    abf.log.info("analyzing as an IC ramp")
    plot = ABFplot(abf)
    plot.kwargs["lw"] = .5
    plot.title = ""
    currents = np.arange(abf.sweeps) * stepSize - startAt

    # AP detection
    ap = AP(abf)
    ap.detect_time1 = .1
    ap.detect_time2 = .7
    ap.detect()

    # stacked plot
    plt.figure(figsize=(SQUARESIZE, SQUARESIZE))

    ax1 = plt.subplot(221)
    plot.figure_sweeps()

    ax2 = plt.subplot(222)
    ax2.get_yaxis().set_visible(False)
    plot.figure_sweeps(offsetY=150)

    # add vertical marks to graphs:
    for ax in [ax1, ax2]:
        for limit in [ap.detect_time1, ap.detect_time2]:
            ax.axvline(limit, color='r', ls='--', alpha=.5, lw=2)

    # make stacked gain function
    ax4 = plt.subplot(223)
    plt.ylabel("frequency (Hz)")
    plt.ylabel("seconds")
    plt.grid(alpha=.5)
    freqs = ap.get_bySweep("freqs")
    times = ap.get_bySweep("times")
    for i in range(abf.sweeps):
        if len(freqs[i]):
            plt.plot(times[i][:-1],
                     freqs[i],
                     '-',
                     alpha=.5,
                     lw=2,
                     color=plot.getColor(i / abf.sweeps))

    # make gain function graph
    ax4 = plt.subplot(224)
    ax4.grid(alpha=.5)
    plt.plot(currents, ap.get_bySweep("median"), 'b.-', label="median")
    plt.plot(currents, ap.get_bySweep("firsts"), 'g.-', label="first")
    plt.xlabel("applied current (pA)")
    plt.legend(loc=2, fontsize=10)
    plt.axhline(40, color='r', alpha=.5, ls="--", lw=2)
    plt.margins(.02, .1)

    # save it
    plt.tight_layout()
    frameAndSave(abf, "AP Gain %d_%d" % (startAt, stepSize))
    plt.close('all')

    # make a second figure that just shows every sweep up to the first AP
    plt.figure(figsize=(SQUARESIZE, SQUARESIZE))
    plt.grid(alpha=.5)
    plt.ylabel("Membrane Potential (mV)")
    plt.xlabel("Time (seconds)")
    for sweep in abf.setsweeps():
        plt.plot(abf.sweepX2, abf.sweepY, color='b', alpha=.5)
        if np.max(abf.sweepY > 0):
            break
    plt.tight_layout()
    plt.margins(0, .1)

    plt.axis([0, 1, None, None])
    plt.title("%d pA Steps from Rest" % stepSize)
    frameAndSave(abf, "voltage response fromRest", closeWhenDone=False)
    plt.axis([1.5, 2.5, None, None])
    plt.title("%d pA Steps from %d pA" % (stepSize, startAt))
    frameAndSave(abf, "voltage response hyperpol", closeWhenDone=False)
    plt.close('all')
Exemple #6
0
def proto_0314(theABF):
    abf = ABF(theABF)
    abf.log.info("analyzing a cosine + ramp protocol")

    if len(abf.comment_sweeps > 0):
        # comments exist, so graph the average sweep before/after the first comment
        sweepsToAverage = 10
        baselineSweep1 = max(0, abf.comment_sweeps[0] - sweepsToAverage)
        baselineSweep2 = abf.comment_sweeps[0]
        drugSweep1 = abf.comment_sweeps[0] + 1
        drugSweep2 = min(abf.sweeps - 1,
                         abf.comment_sweeps[0] + 1 + sweepsToAverage)

        plt.figure(figsize=(16, 4))
        plt.grid(ls='--', alpha=.5)
        plt.plot(abf.sweepX2,
                 abf.averageSweep(baselineSweep1, baselineSweep2),
                 label="baseline (%d-%d)" % (baselineSweep1, baselineSweep2),
                 alpha=.8)
        plt.plot(abf.sweepX2,
                 abf.averageSweep(drugSweep1, drugSweep2),
                 label="drug (%d-%d)" % (drugSweep1, drugSweep2),
                 alpha=.8)
        plt.margins(0, .05)
        plt.legend()
        plt.tight_layout()
        frameAndSave(abf, "cos ramp avg", closeWhenDone=False)
        plt.axis([2.25, 4.5, None, None])
        frameAndSave(abf, "cos ramp avgSine", closeWhenDone=False)
        plt.axis([9, 12.5, None, None])
        frameAndSave(abf, "cos ramp avgRamp")

    # prepare for AP analysis
    ap = AP(abf)

    # calculate rest potential
    avgVoltagePerSweep = []
    times = []
    for sweep in abf.setsweeps():
        avgVoltagePerSweep.append(abf.average(0, 2.25))
        times.append(abf.sweepStart / 60)

    # detect only cos APs
    M1, M2 = 2.25, 4.5
    ap.detect_time1, ap.detect_time2 = M1, M2
    ap.detect()
    apsPerSweepCos = [len(x) for x in ap.get_bySweep()]

    # detect only ramp APs
    M1, M2 = 9, 12.5
    ap.detect_time1, ap.detect_time2 = M1, M2
    ap.detect()
    apsPerSweepRamp = [len(x) for x in ap.get_bySweep()]

    # make the plot of APs and stuff
    plt.figure(figsize=(8, 8))

    plt.subplot(311)
    plt.grid(ls='--', alpha=.5)
    plt.plot(times, avgVoltagePerSweep, '.-')
    plt.ylabel("Rest Potential (mV)")
    comment_lines(abf)

    plt.subplot(312)
    plt.grid(ls='--', alpha=.5)
    plt.plot(times, apsPerSweepCos, '.-')
    plt.ylabel("APs in Cos (#)")
    comment_lines(abf)

    plt.subplot(313)
    plt.grid(ls='--', alpha=.5)
    plt.plot(times, apsPerSweepRamp, '.-')
    plt.ylabel("APs in Ramp (#)")
    comment_lines(abf)

    plt.tight_layout()

    frameAndSave(abf, "cos ramp")
    plt.close('all')
Exemple #7
0
def proto_0303(theABF):
    """protocol: repeated IC ramps."""

    abf = ABF(theABF)
    abf.log.info("analyzing as a halorhodopsin (2s pulse)")

    # show average voltage
    proto_avgRange(theABF, 0.2, 1.2)
    plt.close('all')

    # show stacked sweeps
    plt.figure(figsize=(8, 8))
    for sweep in abf.setsweeps():
        color = 'b'
        if sweep in np.array(abf.comment_sweeps, dtype=int):
            color = 'r'
        plt.plot(abf.sweepX2, abf.sweepY + 100 * sweep, color=color, alpha=.5)
    plt.margins(0, .01)
    plt.tight_layout()
    frameAndSave(abf, "IC ramps")
    plt.close('all')

    # do AP event detection
    ap = AP(abf)
    ap.detect_time1 = 2.3
    ap.detect_time2 = 8.3
    ap.detect()
    apCount = []
    apSweepTimes = []

    for sweepNumber, times in enumerate(ap.get_bySweep("times")):
        apCount.append(len(times))
        if len(times):
            apSweepTimes.append(times[0])
        else:
            apSweepTimes.append(0)

    # plot AP frequency vs time
    plt.figure(figsize=(8, 8))

    ax1 = plt.subplot(211)
    plt.grid(alpha=.4, ls='--')
    plt.plot(np.arange(len(apCount)) * abf.sweepLength / 60,
             apCount,
             '.-',
             ms=15)
    comment_lines(abf)
    plt.ylabel("AP Count")

    plt.subplot(212, sharex=ax1)
    plt.grid(alpha=.4, ls='--')
    plt.plot(np.arange(len(apCount)) * abf.sweepLength / 60,
             apSweepTimes,
             '.-',
             ms=15)
    comment_lines(abf)
    plt.ylabel("First AP Time (s)")
    plt.xlabel("Experiment Duration (minutes)")
    plt.tight_layout()
    frameAndSave(abf, "IC ramp freq")
    plt.close('all')