def mcmc(data, start=None, nsamples=10000, nafc=2, sigmoid='logistic', core='mw0.1', priors=None, stepwidths=None, sampler="MetropolisHastings", gammaislambda=False): """ Markov Chain Monte Carlo sampling for a psychometric function. Parameters ---------- data : A list of lists or an array of data. The first column should be stimulus intensity, the second column should be number of correct responses (in 2AFC) or number of yes- responses (in Yes/No), the third column should be number of trials. See also: the examples section below. start : sequence of floats of length number of model parameters Starting values for the markov chain. If this is None, the MAP estimate will be used. nsamples : int Number of samples to be taken from the posterior (note that due to suboptimal sampling, this number may be much lower than the effective number of samples. nafc : int Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is assumed. sigmoid : string Name of the sigmoid to be fitted. Valid sigmoids include: logistic gauss gumbel_l gumbel_r See `swignifit.utility.available_sigmoids()` for all available sigmoids. core : string \"core\"-type of the psychometric function. Valid choices include: ab (x-a)/b mw%g midpoint and width linear a+bx log a+b log(x) See `swignifit.utility.available_cores()` for all available sigmoids. priors : sequence of strings length number of parameters Prior distributions on the parameters of the psychometric function. These are expressed in the form of a list of prior names. Valid prior choices include: Uniform(%g,%g) Gauss(%g,%g) Beta(%g,%g) Gamma(%g,%g) nGamma(%g,%g) if an invalid prior or `None` is selected, no constraints are imposed at all. See `swignifit.utility.available_priors()` for all available sigmoids. if an invalid prior is selected, no constraints are imposed on that parameter resulting in an improper prior distribution. stepwidths : sequence of floats of length number of model parameters Standard deviations of the proposal distribution. The best choice is sometimes a bit tricky here. However, as a rule of thumb we can state: if the stepwidths are too small, the samples might not cover the whole posterior, if the stepwidths are too large, most steps will leave the area of high posterior density and will therefore be rejected. Thus, in general stepwidths should be somewhere in the middle. sampler : string The type of MCMC sampler to use. See: `sw.utility.available_samplers()` for a list of available samplers. gammaislambda : boolean Set the gamma == lambda prior. Output ------ (estimates, deviance, posterior_predictive_data, posterior_predictive_deviances, posterior_predictive_Rpd, posterior_predictive_Rkd, logposterior_ratios, accept_rate) estimates : numpy array, shape: (nsamples, nparameters) Parameters sampled from the posterior density of parameters given the data. deviances : numpy array, length: nsamples Associated deviances for each estimate posterior_predictive_data : numpy array, shape: (nsamples, nblocks) Data that are simulated by sampling from the joint posterior of data and parameters. They are important for model checking. posterior_predictive_deviances : numpy array, length: nsamples The deviances that are associated with the posterior predictive data. A particular way of model checking could be to compare the deviances and the posterior predicitive deviances. For a good model these should be relatively similar. posterior_predictive_Rpd : numpy array, length: nsamples Correlations between psychometric function and deviance residuals associated with posterior predictive data posterior_predictive_Rkd : numpy array, length: nsamples Correlations between block index and deviance residuals associated with posterior predictive data. logposterior_ratios : numpy array, shape: (nsamples, nblocks) Ratios between the full posetrior and the posterior for a single block for all samples. Used for calculating the KL-Divergence to detrmine influential observations in the Bayesian paradigm. accept_rate : float The number of proposed MCMC samples that were accepted. Example ------- >>> x = [float(2*k) for k in xrange(6)] >>> k = [34,32,40,48,50,48] >>> n = [50]*6 >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)] >>> priors = ('Gauss(0,1000)','Gauss(0,1000)','Beta(3,100)') >>> stepwidths = (1.,1.,0.01) >>> (estimates, deviance, posterior_predictive_data, posterior_predictive_deviances, posterior_predictive_Rpd, posterior_predictive_Rkd, logposterior_ratios, accept_rate) \ = mcmc(d,nsamples=10000,priors=priors,stepwidths=stepwidths) >>> mean(estimates[:,0]) 2.4811791550665272 >>> mean(estimates[:,1]) 7.4935217545849184 """ dataset, pmf, nparams = sfu.make_dataset_and_pmf( data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda) if start is not None: start = sfu.get_start(start, nparams) else: # use mapestimate opt = sfr.PsiOptimizer(pmf, dataset) start = opt.optimize(pmf, dataset) proposal = sfr.GaussRandom() if sampler not in sfu.sampler_dict.keys(): raise sfu.PsignifitException("The sampler: " + sampler + " is not available.") else: sampler = sfu.sampler_dict[sampler](pmf, dataset, proposal) sampler.setTheta(start) if stepwidths != None: stepwidths = np.array(stepwidths) if len(stepwidths.shape) == 2: if isinstance(sampler, sfr.GenericMetropolis): sampler.findOptimalStepwidth(sfu.make_pilotsample(stepwidths)) elif isinstance(sampler, sfr.MetropolisHastings): sampler.setStepSize(sfr.vector_double(stepwidths.std(0))) else: raise sfu.PsignifitException( "You provided a pilot sample but the selected sampler does not support pilot samples" ) elif len(stepwidths) != nparams: raise sfu.PsignifitException("You specified \'"+str(len(stepwidths))+\ "\' stepwidth(s), but there are \'"+str(nparams)+ "\' parameters.") else: if isinstance(sampler, sfr.DefaultMCMC): for i, p in enumerate(stepwidths): p = sfu.get_prior(p) sampler.set_proposal(i, p) else: sampler.setStepSize(sfr.vector_double(stepwidths)) post = sampler.sample(nsamples) nblocks = dataset.getNblocks() estimates = np.zeros((nsamples, nparams)) deviance = np.zeros(nsamples) posterior_predictive_data = np.zeros((nsamples, nblocks)) posterior_predictive_deviances = np.zeros(nsamples) posterior_predictive_Rpd = np.zeros(nsamples) posterior_predictive_Rkd = np.zeros(nsamples) logposterior_ratios = np.zeros((nsamples, nblocks)) for i in xrange(nsamples): for j in xrange(nparams): estimates[i, j] = post.getEst(i, j) deviance[i] = post.getdeviance(i) for j in xrange(nblocks): posterior_predictive_data[i, j] = post.getppData(i, j) logposterior_ratios[i, j] = post.getlogratio(i, j) posterior_predictive_deviances[i] = post.getppDeviance(i) posterior_predictive_Rpd[i] = post.getppRpd(i) posterior_predictive_Rkd[i] = post.getppRkd(i) accept_rate = post.get_accept_rate() return (estimates, deviance, posterior_predictive_data, posterior_predictive_deviances, posterior_predictive_Rpd, posterior_predictive_Rkd, logposterior_ratios, accept_rate)
def mapestimate(data, nafc=2, sigmoid='logistic', core='ab', priors=None, cuts=None, start=None, gammaislambda=False): """ MAP or constrained maximum likelihood estimation for a psychometric function. Parameters ---------- data : A list of lists or an array of data. The first column should be stimulus intensity, the second column should be number of correct responses (in 2AFC) or number of yes- responses (in Yes/No), the third column should be number of trials. See also: the examples section below. nafc : int Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is assumed. sigmoid : string Name of the sigmoid to be fitted. Valid sigmoids include: logistic gauss gumbel_l gumbel_r See `swignifit.utility.available_sigmoids()` for all available sigmoids. core : string \"core\"-type of the psychometric function. Valid choices include: ab (x-a)/b mw%g midpoint and width linear a+bx log a+b log(x) See `swignifit.utility.available_cores()` for all available sigmoids. priors : sequence of strings length number of parameters Prior distributions on the parameters of the psychometric function. These are expressed in the form of a list of prior names. Valid prior choices include: Uniform(%g,%g) Gauss(%g,%g) Beta(%g,%g) Gamma(%g,%g) nGamma(%g,%g) if an invalid prior or `None` is selected, no constraints are imposed at all. See `swignifit.utility.available_priors()` for all available sigmoids. if an invalid prior is selected, no constraints are imposed on that parameter resulting in an improper prior distribution. cuts : sequence of floats Cuts at which thresholds should be determined. That is if cuts = (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75 )) are returned. Here F^{-1} denotes the inverse of the function specified by sigmoid. If cuts==None, this is modified to cuts=[0.5]. start : sequence of floats of length number of model parameters Values at which to start the optimization, if None the starting value is determined using a coarse grid search. Output ------ estimate, fisher, thres, slope, deviance estimate : numpy array length nparams the map/cml estimate fisher : numpy array shape (nparams, nparams) the fisher matrix thres : numpy array length ncuts the model prediction at the cuts slope : numpy array length ncuts the gradient of the psychometric function at the cuts deviance : numpy array length 1 the deviance for the estimate Example ------- >>> x = [float(2*k) for k in xrange(6)] >>> k = [34,32,40,48,50,48] >>> n = [50]*6 >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)] >>> priors = ('flat','flat','Uniform(0,0.1)') >>> estimate, fisher, thres, slope, deviance = mapestimate ( d, priors=priors ) >>> estimate array([ 2.75180624, 1.45717745, 0.01555658]) >>> deviance array(8.0713313642328242) """ dataset, pmf, nparams = sfu.make_dataset_and_pmf( data, nafc, sigmoid, core, priors, gammaislambda=gammaislambda) cuts = sfu.get_cuts(cuts) opt = sfr.PsiOptimizer(pmf, dataset) estimate = opt.optimize( pmf, dataset, sfu.get_start(start, nparams) if start is not None else None) H = pmf.ddnegllikeli(estimate, dataset) thres = [pmf.getThres(estimate, c) for c in cuts] slope = [pmf.getSlope(estimate, th) for th in thres] deviance = pmf.deviance(estimate, dataset) # convert to numpy stuff estimate = np.array(estimate) fisher = np.zeros((nparams, nparams)) for (i, j) in ((i, j) for i in xrange(nparams) for j in xrange(nparams)): fisher[i, j] = sfr.doublep_value(H(i, j)) thres = np.array(thres) slope = np.array(slope) deviance = np.array(deviance) return estimate, fisher, thres, slope, deviance
def test_optimize(self): model = TestPsychometric.generate_test_model() data = TestData.generate_test_dataset() opt = sfr.PsiOptimizer(model, data) opt.optimize(model, data, None)