def diagnostics(data, params, nafc=2, sigmoid="logistic", core="ab", cuts=None, gammaislambda=False): # here we need to hack stuff, since data can be either 'real' data, or just # a list of intensities, or just an empty sequence # in order to remain compatible with psipy we must check for an empty # sequence here, and return a specially crafted return value in that case. # sorry.. if op.isSequenceType(data) and len(data) == 0: pmf, nparams = sfu.make_pmf( sfr.PsiData([0], [0], [0], 1), nafc, sigmoid, core, None, gammaislambda=gammaislambda ) thres = np.array([pmf.getThres(params, cut) for cut in sfu.get_cuts(cuts)]) slope = np.array([pmf.getSlope(params, th) for th in thres]) return np.array([]), np.array([]), 0.0, thres, np.nan, np.nan shape = np.shape(np.array(data)) intensities_only = False if len(shape) == 1: # just intensities, make a dataset with k and n all zero k = n = [0] * shape[0] data = [[xx, kk, nn] for xx, kk, nn in zip(data, k, n)] intensities_only = True else: # data is 'real', just do nothing pass dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, None, gammaislambda=gammaislambda) cuts = sfu.get_cuts(cuts) params = sfu.get_params(params, nparams) predicted = np.array([pmf.evaluate(intensity, params) for intensity in dataset.getIntensities()]) if intensities_only: return predicted else: deviance_residuals = pmf.getDevianceResiduals(params, dataset) deviance = pmf.deviance(params, dataset) thres = np.array([pmf.getThres(params, cut) for cut in cuts]) slope = np.array([pmf.getSlope(params, th) for th in thres]) rpd = pmf.getRpd(deviance_residuals, params, dataset) rkd = pmf.getRkd(deviance_residuals, dataset) return predicted, deviance_residuals, deviance, thres, slope, rpd, rkd
def diagnostics(data, params, nafc=2, sigmoid='logistic', core='ab', cuts=None, gammaislambda=False): """ Some diagnostic statistics for a psychometric function fit. This function is a bit messy since it has three functions depending on the type of the `data` argument. Parameters ---------- data : variable real data : A list of lists or an array of data. The first column should be stimulus intensity, the second column should be number of correct responses (in 2AFC) or number of yes- responses (in Yes/No), the third column should be number of trials. See also: the examples section below. intensities : sequence of floats The x-values of the psychometric function, then we obtain only the predicted values. no data : empty sequence In this case we evaluate the psychometric function at the cuts. All other return values are then irrelevant. params : sequence of len nparams parameter vector at which the diagnostic information should be evaluated nafc : int Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is assumed. sigmoid : string Name of the sigmoid to be fitted. Valid sigmoids include: logistic gauss gumbel_l gumbel_r See `swignifit.utility.available_sigmoids()` for all available sigmoids. core : string \"core\"-type of the psychometric function. Valid choices include: ab (x-a)/b mw%g midpoint and width linear a+bx log a+b log(x) See `swignifit.utility.available_cores()` for all available sigmoids. cuts : sequence of floats Cuts at which thresholds should be determined. That is if cuts = (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75 )) are returned. Here F^{-1} denotes the inverse of the function specified by sigmoid. If cuts==None, this is modified to cuts=[0.5]. Output ------ (predicted, deviance_residuals, deviance, thres, Rpd, Rkd) predicted : numpy array of length nblocks predicted values associated with the respective stimulus intensities deviance_residuals : numpy array of length nblocks deviance residuals of the data deviance float deviance of the data thres : numpy array length ncuts the model prediction at the cuts Rpd : float correlation between predicted performance and deviance residuals Rkd : float correlation between block index and deviance residuals Example ------- >>> x = [float(2*k) for k in xrange(6)] >>> k = [34,32,40,48,50,48] >>> n = [50]*6 >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)] >>> prm = [2.75, 1.45, 0.015] >>> pred,di,D,thres,slope,Rpd,Rkd = diagnostics(d,prm) >>> D 8.0748485860836254 >>> di[0] 1.6893279652591433 >>> Rpd -0.19344675783032755 """ # here we need to hack stuff, since data can be either 'real' data, or just # a list of intensities, or just an empty sequence # in order to remain compatible with psipy we must check for an empty # sequence here, and return a specially crafted return value in that case. # sorry.. # TODO after removal of psipy we can probably change this. if op.isSequenceType(data) and len(data) == 0: pmf, nparams = sfu.make_pmf(sfr.PsiData([0], [0], [0], 1), nafc, sigmoid, core, None, gammaislambda=gammaislambda) thres = np.array( [pmf.getThres(params, cut) for cut in sfu.get_cuts(cuts)]) slope = np.array([pmf.getSlope(params, th) for th in thres]) return np.array([]), np.array([]), 0.0, thres, np.nan, np.nan shape = np.shape(np.array(data)) intensities_only = False if len(shape) == 1: # just intensities, make a dataset with k and n all zero k = n = [0] * shape[0] data = [[xx, kk, nn] for xx, kk, nn in zip(data, k, n)] intensities_only = True else: # data is 'real', just do nothing pass dataset, pmf, nparams = sfu.make_dataset_and_pmf( data, nafc, sigmoid, core, None, gammaislambda=gammaislambda) cuts = sfu.get_cuts(cuts) params = sfu.get_params(params, nparams) predicted = np.array([ pmf.evaluate(intensity, params) for intensity in dataset.getIntensities() ]) if intensities_only: return predicted else: deviance_residuals = pmf.getDevianceResiduals(params, dataset) deviance = pmf.deviance(params, dataset) thres = np.array([pmf.getThres(params, cut) for cut in cuts]) slope = np.array([pmf.getSlope(params, th) for th in thres]) rpd = pmf.getRpd(deviance_residuals, params, dataset) rkd = pmf.getRkd(deviance_residuals, dataset) return predicted, deviance_residuals, deviance, thres, slope, rpd, rkd
def diagnostics(data, params, nafc=2, sigmoid='logistic', core='ab', cuts=None, gammaislambda=False): """ Some diagnostic statistics for a psychometric function fit. This function is a bit messy since it has three functions depending on the type of the `data` argument. Parameters ---------- data : variable real data : A list of lists or an array of data. The first column should be stimulus intensity, the second column should be number of correct responses (in 2AFC) or number of yes- responses (in Yes/No), the third column should be number of trials. See also: the examples section below. intensities : sequence of floats The x-values of the psychometric function, then we obtain only the predicted values. no data : empty sequence In this case we evaluate the psychometric function at the cuts. All other return values are then irrelevant. params : sequence of len nparams parameter vector at which the diagnostic information should be evaluated nafc : int Number of responses alternatives for nAFC tasks. If nafc==1 a Yes/No task is assumed. sigmoid : string Name of the sigmoid to be fitted. Valid sigmoids include: logistic (1+exp(-x))**-1 [Default] gauss Phi(x) gumbel_l 1 - exp(-exp(x)) gumbel_r exp(-exp(-x)) exponential x>0: 1 - exp(-x); else: 0 cauchy atan(x)/pi + 0.5 id x; only useful in conjunction with NakaRushton core See `swignifit.utility.available_sigmoids()` for all available sigmoids. core : string \"core\"-type of the psychometric function. Valid choices include: ab (x-a)/b [Default] mw%g midpoint and width, with "%g" a number larger than 0 and less than 0.5. mw%g corresponds to a parameterization in terms of midpoint and width of the rising part of the sigmoid. This width is defined as the length of the interval on which the sigmoidal part reaches from "%g" to 1-"%g". linear a+b*x log a+b*log(x) weibull 2*s*m*(log(x)-log(m))/log(2) + log(log(2)) This will give you a weibull if combined with the gumbel_l sigmoid and a reverse weibull if combined with the gumbel_r sigmoid. poly (x/a)**b Will give you a weibull if combined with an exp sigmoid NakaRushton The Naka-Rushton nonlinearity; should only be used with an id core See `swignifit.utility.available_cores()` for all available cores. cuts : sequence of floats Cuts at which thresholds should be determined. That is if cuts = (.25,.5,.75), thresholds (F^{-1} ( 0.25 ), F^{-1} ( 0.5 ), F^{-1} ( 0.75 )) are returned. Here F^{-1} denotes the inverse of the function specified by sigmoid. If cuts==None, this is modified to cuts=[0.5]. Output ------ (predicted, deviance_residuals, deviance, thres, Rpd, Rkd) predicted : numpy array of length nblocks predicted values associated with the respective stimulus intensities deviance_residuals : numpy array of length nblocks deviance residuals of the data deviance float deviance of the data thres : numpy array length ncuts the model prediction at the cuts Rpd : float correlation between predicted performance and deviance residuals Rkd : float correlation between block index and deviance residuals Example ------- >>> x = [float(2*k) for k in xrange(6)] >>> k = [34,32,40,48,50,48] >>> n = [50]*6 >>> d = [[xx,kk,nn] for xx,kk,nn in zip(x,k,n)] >>> prm = [2.75, 1.45, 0.015] >>> pred,di,D,thres,slope,Rpd,Rkd = diagnostics(d,prm) >>> D 8.0748485860836254 >>> di[0] 1.6893279652591433 >>> Rpd -0.19344675783032755 """ # here we need to hack stuff, since data can be either 'real' data, or just # a list of intensities, or just an empty sequence # in order to remain compatible with psipy we must check for an empty # sequence here, and return a specially crafted return value in that case. # sorry.. # TODO after removal of psipy we can probably change this. if op.isSequenceType(data) and len(data) == 0: pmf, nparams = sfu.make_pmf(sfr.PsiData([0],[0],[0],1), nafc, sigmoid, core, None, gammaislambda=gammaislambda ) thres = np.array([pmf.getThres(params, cut) for cut in sfu.get_cuts(cuts)]) slope = np.array([pmf.getSlope(params, th ) for th in thres]) return np.array([]), np.array([]), 0.0, thres, np.nan, np.nan shape = np.shape(np.array(data)) intensities_only = False if len(shape) == 1: # just intensities, make a dataset with k and n all zero k = n = [0] * shape[0] data = [[xx,kk,nn] for xx,kk,nn in zip(data,k,n)] intensities_only = True else: # data is 'real', just do nothing pass dataset, pmf, nparams = sfu.make_dataset_and_pmf(data, nafc, sigmoid, core, None, gammaislambda=gammaislambda) cuts = sfu.get_cuts(cuts) params = sfu.get_params(params, nparams) predicted = np.array([pmf.evaluate(intensity, params) for intensity in dataset.getIntensities()]) if intensities_only: return predicted else: deviance_residuals = pmf.getDevianceResiduals(params, dataset) deviance = pmf.deviance(params, dataset) thres = np.array([pmf.getThres(params, cut) for cut in cuts]) slope = np.array([pmf.getSlope(params, th ) for th in thres]) rpd = pmf.getRpd(deviance_residuals, params, dataset) rkd = pmf.getRkd(deviance_residuals, dataset) return predicted, deviance_residuals, deviance, thres, slope, rpd, rkd