Exemple #1
0
    def create_LZ4Dict_wait_for_3s_then_close():

        #created and locked LZ4Dict for 3s
        pkl1 = CompressedStorage(test_p, read_only=False)
        pkl1[1] = np.ones((5, 5))
        time.sleep(3)
        pkl1.push()
def helper_func_sd(paths):
    num_locs = []
    for p in paths:
        loc_dc = CompressedStorage(p + '/locations.pkl',
                                   read_only=True,
                                   disable_locking=True)
        sample_locs = [np.concatenate(sl) for sl in loc_dc.values()]
        num_locs += [len(sl) for sl in sample_locs]
    return num_locs
Exemple #3
0
    def create_success_expected(a, b, q3):
        time.sleep(0)
        start = time.time()

        try:
            pkl2 = CompressedStorage(test_p, read_only=True, timeout=1)
            logging.info('PASSED: create_success_expected')
            q3.put(0)
        except RuntimeError as e:
            logging.warning('FAILED: create_success_expected')
            q3.put(1)
Exemple #4
0
 def create_fail_expected_runtime_error_at_2s(a, b, q2):
     # logging.debug("Started worker to access file for 2s."
     time.sleep(0)
     start = time.time()
     try:
         pkl2 = CompressedStorage(test_p, read_only=True, timeout=2)
         logging.warning('FAILED: create_fail_expected_runtime_error_at_2s')
         q2.put(1)
     except RuntimeError as e:
         logging.info('PASSED: create_fail_expected_runtime_error_at_2s')
         q2.put(0)
Exemple #5
0
    def create_fail_expected_runtime_error_at_1s(a, b, q1):
        # logging.debug("Started worker to access file for 1s"
        time.sleep(0)
        start = time.time()
        try:
            pkl2 = CompressedStorage(
                test_p, read_only=True, timeout=1, max_delay=1
            )  # timeout sets the maximum time before failing, not max_delay

            logging.warning('FAILED: create_fail_expected_runtime_error_at_1s')
            q1.put(1)
        except RuntimeError as e:
            logging.info('PASSED: create_fail_expected_runtime_error_at_1s')
            q1.put(0)
Exemple #6
0
working_dir = so_kwargs['working_dir']
global_params.wd = working_dir
# TODO: preprocess meshes in case they dont exist and then load mesh dict next to the attribute dict
for p in so_chunk_paths:
    # get SV IDs stored in this storage
    attr_dc_p = p + "/attr_dict.pkl"
    mesh_dc_p = p + "/mesh.pkl"
    ad = AttributeDict(attr_dc_p, disable_locking=True)
    md = MeshStorage(mesh_dc_p, disable_locking=True)
    svixs = list(ad.keys())
    # replace SO objects by using rep_coord and IDs stored in the attribute dict
    sd = sos_dict_fact(svixs, **so_kwargs)
    sos = init_sos(sd)
    # compute locations and use already processed meshes
    loc_dc_p = p + "/locations.pkl"
    loc_dc = CompressedStorage(loc_dc_p, disable_locking=True)
    for so in sos:
        try:
            ix = so.id
            if not ix in md.keys():
                verts = so.mesh[1].reshape(-1, 3)
            else:
                verts = md[ix][1].reshape(-1, 3)
            if len(verts) == 0:
                coords = np.array([
                    so.rep_coord,
                ], dtype=np.float32)
            else:
                if global_params.config.use_new_renderings_locs:
                    coords = generate_rendering_locs(verts,
                                                     2000).astype(np.float32)
working_dir = so_kwargs['working_dir']
global_params.wd = working_dir  # adapt working dir

woglia = pred_kwargs["woglia"]
del pred_kwargs["woglia"]
pred_key = pred_kwargs["pred_key"]
if 'raw_only' in pred_kwargs:
    raw_only = pred_kwargs['raw_only']
    del pred_kwargs['raw_only']
else:
    raw_only = False

model = NeuralNetworkInterface(**model_kwargs)
for p in so_chunk_paths:
    view_dc_p = p + "/views_woglia.pkl" if woglia else p + "/views.pkl"
    view_dc = CompressedStorage(view_dc_p, disable_locking=True)
    svixs = list(view_dc.keys())
    if len(svixs) == 0:
        continue
    views = list(view_dc.values())
    if raw_only and views[0].shape[1] != 1:
        for ii in range(len(views)):
            views[ii] = views[ii][:, 1]
    sd = sos_dict_fact(svixs, **so_kwargs)
    sos = init_sos(sd)
    probas = predict_views(model, views, sos, return_proba=True, **pred_kwargs)
    attr_dc_p = p + "/attr_dict.pkl"
    ad = AttributeDict(attr_dc_p, disable_locking=True)
    for ii in range(len(sos)):
        ad[sos[ii].id][pred_key] = probas[ii]
    ad.push()