Exemple #1
0
    def deser(msg_obj, worker, acquire):

        if 'owner' not in msg_obj:
            raise TypeError(
                "sy._LocalTensor can't deserialize a non-valid sy._LocalTensor. "
                "Do you wan to call sy.FloatTensor.deser() instead?")
        if msg_obj['owner'] == worker.id:
            logging.warning('_LocalTensor sent to itself')
        if acquire:  # We need to register the info given
            syft_obj = sy._LocalTensor(child=None,
                                       parent=None,
                                       torch_type=msg_obj['torch_type'],
                                       owner=worker,
                                       id=msg_obj['id'],
                                       skip_register=True)
        else:  # We point at the info which generally we can't really have
            # We make sure we are not creating a duplicate pointer
            previous_pointer = worker.get_pointer_to(msg_obj['owner'],
                                                     msg_obj['id'])
            if previous_pointer is None:
                syft_obj = sy._PointerTensor(child=None,
                                             parent=None,
                                             torch_type=msg_obj['torch_type'],
                                             location=msg_obj['owner'],
                                             id_at_location=msg_obj['id'],
                                             owner=worker,
                                             id=None,
                                             skip_register=True)
            else:
                syft_obj = previous_pointer
        return syft_obj
Exemple #2
0
    def _send_msg(self, message_wrapper_json_binary, recipient):
        """Sends a string message to another worker with message_type information
        indicating how the message should be processed.

        :Parameters:

        * **recipient (** :class:`VirtualWorker` **)** the worker being sent a message.

        * **message_wrapper_json_binary (binary)** the message being sent encoded in binary

        * **out (object)** the response from the message being sent. This can be a variety
          of object types. However, the object is typically only used during testing or
          local development with :class:`VirtualWorker` workers.
        """
        return sy._LocalTensor()
Exemple #3
0
    def test_encode_SyftTensor(self):
        # Given
        owner = VirtualWorker(id="me")
        obj = sy._LocalTensor(owner=owner,
                              id="id",
                              torch_type="syft.FloatTensor")
        expected = {
            "mode": "subscribe",
            "obj": {
                "___LocalTensor__": {
                    "id": "id",
                    "owner": "me",
                    "torch_type": "syft.FloatTensor",
                }
            },
        }

        # When
        result = self.cut.encode(obj)

        # Then
        self.assertEqual(expected, result)
Exemple #4
0
    def handle_call(cls, syft_command, owner):
        """
        Execute a forwarded command on the native tensor with native operations.
        Receive a syft command and an owner, and converts it into command with
        native torch args. Excute native operations and converts it back into
        syft response using _LocalTensors.
        """
        tensor_command, torch_type = torch_utils.prepare_child_command(
            syft_command, replace_tensorvar_with_child=True)
        torch_utils.assert_has_only_torch_tensorvars(tensor_command)

        attr = tensor_command['command']
        args = tensor_command['args']
        kwargs = tensor_command['kwargs']
        has_self = tensor_command['has_self']

        if has_self:
            self = tensor_command['self']
            attr = torch._command_guard(attr, torch.tensorvar_methods)
            command = getattr(self, "native_" + attr)
        else:
            attr = torch._command_guard(attr, torch.torch_modules)
            elems = attr.split('.')
            elems[-1] = 'native_' + elems[-1]
            native_func_name = '.'.join(elems)
            command = eval(native_func_name)

        response = command(*args, **kwargs)

        # TODO : control registration process
        if response is None:
            return response

        if owner.id != owner.hook.local_worker.id:
            if isinstance(response, (int, float, bool)):
                response = sy.zeros(1) + response
            elif isinstance(response, (np.ndarray, )):
                response = sy.FloatTensor(response)
        else:
            if isinstance(response, (int, float, bool, np.ndarray)):
                return response

        # If the command is an in-place method, wrap self and return
        if has_self and utils.is_in_place_method(attr):
            # wrap the main element
            torch_utils.wrap_command_with(response, syft_command['self'])

            if torch_utils.is_variable(response):
                # Also wrap the data if it's a variable (don't use wrap_command_with: the chain is not well formed yet)
                syft_command['self'].child.data = response.data
                response.data.parent = syft_command['self'].child.data.parent
                # And wrap the grad if there is one
                if response.grad is not None:
                    if response.grad.data.dim() > 0:
                        syft_command['self'].child.grad = response.grad
                    else:
                        syft_command['self'].child.grad.native_set_()
                    response.grad.parent = syft_command[
                        'self'].child.grad.parent
                # Finally, fix the links .data and .grad
                if response.grad is None:
                    torch_utils.link_var_chain_to_data_chain(
                        syft_command['self'], response.data.child)
                else:
                    torch_utils.link_var_chain_to_data_and_grad_chains(
                        syft_command['self'], response.data.child,
                        response.grad.child)

            return_response = syft_command['self']
        # Else, the response if not self. Iterate over the response(s) and wrap with a syft tensor
        else:
            responses = response if isinstance(response,
                                               tuple) else (response, )
            syft_responses = []
            for resp in responses:
                if resp is None:  # Don't wrap None
                    syft_responses.append(resp)
                    continue

                if isinstance(resp, (int, float, bool)):
                    # if not final worker, convert into Float Tensor, which comes with a _LocalTensor
                    if owner.id != owner.hook.local_worker.id:
                        resp = sy.zeros(1) + resp
                    else:  # Else don't wrap it
                        syft_responses.append(resp)
                        continue

                syft_response = sy._LocalTensor(child=resp,
                                                parent=resp,
                                                owner=owner,
                                                torch_type='syft.' +
                                                type(resp).__name__)

                if torch_utils.is_variable(resp):
                    if resp.grad is None:
                        torch_utils.link_var_chain_to_data_chain(
                            syft_response, resp.data.child)
                    else:
                        torch_utils.link_var_chain_to_data_and_grad_chains(
                            syft_response, resp.data.child, resp.grad.child)

                syft_responses.append(syft_response)

            return_response = tuple(syft_responses) if len(
                syft_responses) > 1 else syft_responses[0]

        return return_response