def get_emg_data_object(self,n_gestures=6): emg_data = symbionic.EmgData() for g in range(1,n_gestures+1): emg_values = self.get_chained_device_data_for_prediction(g) if emg_values is not None and len(emg_values) > 0: emg_data.store_emg_values_in_gesture(emg_values,f'g{g}') return emg_data
def test_list_to_dataframe(): emg_data = symbionic.EmgData() emg_data.demean_data = False df = emg_data.convert_emg_values_to_dataframe(raw_emg_data_sample()) assert df.shape == (2, emg_data.channels + 1), 'Output shape does not match' assert df[emg_data.channel_names[0]].tolist() == [1.1] * 2
def __init__(self): emg_data = symbionic.EmgData() emg_data.load(symbionic.example_data_directory() + "raw3.bin") emg_array = emg_data.data['g1'].drop('time', axis=1).values emg_iterator = DataIterator(emg_array) emg_iterator.step = 80 emg_iterator.size = 500 self.emg_iterator = emg_iterator
''' currently just a script @author: Matthijs Cox ''' import symbionic import numpy as np import matplotlib.pyplot as plt folder = symbionic.example_data_directory() emg_data = symbionic.EmgData() emg_data.load(folder + 'raw1.bin', gesture='g1') emg_data.load(folder + 'raw2.bin', gesture='g2') emg_data.load(folder + 'raw3.bin', gesture='g3') emg_data.load(folder + 'raw4.bin', gesture='g4') emg_data.load(folder + 'raw5.bin', gesture='g5') emg_data.load(folder + 'raw6.bin', gesture='g6') emg_data.label_patterns() emg_data.plot(ylim=(-100, 100)) # get windowed training samples # samples = emg_data.get_training_samples()
def test_data_retrieval(): emg_data = symbionic.EmgData() emg_data.store_emg_values_in_gesture([1.1] * emg_data.channels * 2, 'g1') data = emg_data.get_data_from_gesture('g1') assert isinstance(data, pd.DataFrame) assert emg_data.get_data_from_gesture('g2') is None
def test_data_retrieval(): emg_data = symbionic.EmgData() emg_data.store_emg_values_in_gesture(raw_emg_data_sample(), 'g1') data = emg_data.get_data_from_gesture('g1') assert isinstance(data, pd.DataFrame) assert emg_data.get_data_from_gesture('g2') is None
def load_emg_data_single_gesture(): emg_data = symbionic.EmgData() emg_data.load(data_directory() + 'raw2.bin', gesture='g2') emg_data.label_patterns() return emg_data