Exemple #1
0
class CompilationEngine(object):
   # the destination file for writing
   destination_file = None

   # the tokenizer for the input file
   tokenizer = None

   # symbol table
   symbol_table = None

   # vm writer
   vm_writer = None

   # the class name
   class_name = ""

   # indicies for if and while loops
   # start at -1 because we increment before use
   while_index = -1
   if_index = -1

   # the constructor for compiling a single class
   # the next method to be called after construction must be compile_class
   # source_filename must be a single file, not a directory
   def __init__(self, source_filename):
      # destination filename
      # if the original extension was .jack, then make the extension .vm
      # if the original extension was not .jack, then append .vm
      if source_filename.lower().endswith(".jack"):
         destination_filename = source_filename[:-5] + ".vm"
      else:
         destination_filename = source_filename + ".vm"

      # open the destination filename for writing
      self.destination_file = open(destination_filename, 'w')

      # create a tokenizer for the input file
      self.tokenizer = JackTokenizer(source_filename)

      # create the symbol table
      self.symbol_table = SymbolTable()

      # create the vm writer
      self.vm_writer = VMWriter(self.destination_file)

   # compiles a complete class and closes the output file
   def compile_class(self):
      # class keyword
      tt, t = self._token_next(True, "KEYWORD", "class")

      # name of class
      tt, t = self._token_next(True, "IDENTIFIER")
      self.class_name = t

      # open brace
      tt, t = self._token_next(True, "SYMBOL", "{")

      # one or more variable declarations
      self.tokenizer.advance()
      while True:
         tt, t = self._token_next(False)
         if tt == "KEYWORD" and t in ["field", "static"]:
            self.compile_class_var_dec()
         else:
            # stop trying to process variable declarations
            break

      # one or more subroutine declarations
      while True:
         tt, t = self._token_next(False)
         if tt == "KEYWORD" and t in ["constructor", "function", "method"]:
            self.compile_subroutine()
         else:
            # stop trying to process functions
            break

      # close brace
      # do not advance because we already advanced upon exiting the last loop
      tt, t = self._token_next(False, "SYMBOL", "}")

      # done with compilation; close the output file
      self.destination_file.close()

   # compiles a static declaration or field declaration
   def compile_class_var_dec(self):
      # compile the variable declaration
      # False means this is a class (not a subroutine)
      self.compile_var_dec(False)

   # compiles a complete method, function, or constructor
   def compile_subroutine(self):
      # start of subroutine
      self.symbol_table.start_subroutine()

      # constructor, function, or method keyword
      tt, type = self._token_next(False, "KEYWORD")

      # type of the return value
      # can be either keyword (void) or an identifier (any type)
      tt, t = self._token_next(True)

      # name of the method/function/constructor
      tt, name = self._token_next(True)
      name = self.class_name + "." + name

      # if the type is a method, "define" this as an argument, so the other
      # argument indexes work correctly
      if type == "method":
         self.symbol_table.define("this", self.class_name, SymbolTable.ARG)

      # opening parenthesis
      tt, t = self._token_next(True, "SYMBOL", "(")

      # arguments
      self.tokenizer.advance()
      self.compile_parameter_list()

      # closing parenthesis
      tt, t = self._token_next(False, "SYMBOL", ")")

      # opening brace
      tt, t = self._token_next(True, "SYMBOL", "{")

      # variable declarations
      self.tokenizer.advance()
      while True:
         tt, t = self._token_next(False)
         if tt == "KEYWORD" and t == "var":
            self.compile_var_dec()
         else:
            # stop trying to process variable declarations
            break

      # write the function
      num_locals = self.symbol_table.var_count(self.symbol_table.VAR)
      self.vm_writer.write_function(name, num_locals)

      # write any special code at the top of the function
      if type == "constructor":
         # code to allocate memory and set "this"
         size = self.symbol_table.var_count(self.symbol_table.FIELD)
         self.vm_writer.write_push(self.vm_writer.CONST, size)
         self.vm_writer.write_call("Memory.alloc", 1)
         self.vm_writer.write_pop(self.vm_writer.POINTER, 0)
      elif type == "function":
         # nothing special
         pass
      elif type == "method":
         # put argument 0 into pointer 0 (this)
         self.vm_writer.write_push(self.vm_writer.ARG, 0)
         self.vm_writer.write_pop(self.vm_writer.POINTER, 0)
      else:
         print "WARNING: Expected constructor, function, or name; got", type

      # statements
      self.compile_statements()

      # closing brace
      tt, t = self._token_next(False, "SYMBOL", "}")

      self.tokenizer.advance()

   # compiles a (possibly empty) parameter list, not including the enclosing
   # parentheses
   def compile_parameter_list(self):
      # check for empty list
      tt, t = self._token_next(False)
      if tt == "SYMBOL" and t == ")":
         # the parameter list was empty; do not process any more
         pass
      else:
         # there are things in the parameter list
         while True:
            # keyword (variable type)
            tt, type = self._token_next(False)

            # identifier (variable name)
            tt, name = self._token_next(True)

            # the kind is always an arg, since these are all parameters to the
            # function
            kind = SymbolTable.ARG

            # define the variable in the symbol table
            self.symbol_table.define(name, type, kind)

            # possible comma
            tt, t = self._token_next(True)
            if tt != "SYMBOL" or t != ",":
               # not a comma; stop processing parameters
               break

            self.tokenizer.advance()

   # compiles a var declaration
   # if subroutine is true, only the var keyword can be used
   # if subroutine is false, only the static and field keywords can be used
   def compile_var_dec(self, subroutine=True):
      # the keyword to start the declaration
      tt, kind = self._token_next(False, "KEYWORD")

      # check for required types
      if subroutine:
         if kind == "var":
            kind = SymbolTable.VAR
         else:
            print "WARNING: expecting var, but received %s" % (str(kind))
      else:
         if kind == "static":
            kind = SymbolTable.STATIC
         elif kind == "field":
            kind = SymbolTable.FIELD
         else:
            print "WARNING: expecting static or field, but received %s" % (str(kind))

      # type of the declaration
      # could be an identifier or a keyword (int, etc)
      tt, type = self._token_next(True)

      # name of the declaration
      tt, name = self._token_next(True, "IDENTIFIER")

      # define the variable in the symbol table
      self.symbol_table.define(name, type, kind)

      # can support more than one identifier name, to declare more than one
      # variable, separated by commas; process the 2nd-infinite variables
      self.tokenizer.advance()
      while True:
         tt, t = self._token_next(False)
         if tt == "SYMBOL" and t == ",":
            # another variable name follows
            tt, name = self._token_next(True, "IDENTIFIER")

            # define the variable in the symbol table
            self.symbol_table.define(name, type, kind)

            self.tokenizer.advance()
         else:
            # no more variable names
            break

      # should be on the semicolon at the end of the line
      tt, t = self._token_next(False, "SYMBOL", ";")

      self.tokenizer.advance()

   # compiles a sequence of statements, not including the enclosing {}
   def compile_statements(self):
      while True:
         tt, t = self._token_next(False)
         if tt == "KEYWORD" and t in ["do", "let", "while", "return", "if"]:
            # call compile_t, where t is the type of compilation we want
            token = getattr(self, "compile_" + t)()
         else:
            # not a statement; stop processing statements
            break

   # compiles a do statement
   def compile_do(self):
      # do keyword
      tt, t = self._token_next(False, "KEYWORD", "do")

      # subroutine call
      self.tokenizer.advance()
      self.compile_subroutine_call()

      # do statements do not have a return value, so eliminate the return
      # off of the stack
      self.vm_writer.write_pop(self.vm_writer.TEMP, 0)

      # semicolon
      tt, t = self._token_next(False, "SYMBOL", ";")

      self.tokenizer.advance()

   # compiles a let statement
   def compile_let(self):
      # let keyword
      tt, t = self._token_next(False, "KEYWORD", "let")

      # variable name
      tt, name = self._token_next(True, "IDENTIFIER")

      # possible brackets for array
      tt, t = self._token_next(True)
      if tt == "SYMBOL" and t == "[":
         # array - write operation
         array = True

         # compile the offset expression
         self.tokenizer.advance()
         self.compile_expression()

         # write the base address onto the stack
         segment, index = self._resolve_symbol(name)
         self.vm_writer.write_push(segment, index)

         # add base and offset
         self.vm_writer.write_arithmetic("add")

         # we cannot yet put the result into pointer 1, since the read
         # operation (which hasn't been parsed/computed yet) may use pointer 1
         # to read from an arrya value

         # closing bracket
         tt, t = self._token_next(False, "SYMBOL", "]")

         # advance to the next token, since we are expected to be on the = for
         # the next line
         self.tokenizer.advance()
      else:
         array = False

      # equals sign
      tt, t = self._token_next(False, "SYMBOL", "=")

      # expression
      self.tokenizer.advance()
      self.compile_expression()

      if array:
         # our stack now looks like this:
         #    TOP OF STACK
         #    computed result to store
         #    address in which value should be stored
         #    ... previous stuff ...

         # pop the computed value to temp 0
         self.vm_writer.write_pop(self.vm_writer.TEMP, 0)

         # pop the array address to pointer 1 (that)
         self.vm_writer.write_pop(self.vm_writer.POINTER, 1)

         # put the computed value back onto the stack
         self.vm_writer.write_push(self.vm_writer.TEMP, 0)

         # pop to the variable name or the array reference
         self.vm_writer.write_pop(self.vm_writer.THAT, 0)
      else:
         # not an array - pop the expression to the variable
         segment, index = self._resolve_symbol(name)
         self.vm_writer.write_pop(segment, index)

      # semicolon
      tt, t = self._token_next(False, "SYMBOL", ";")

      self.tokenizer.advance()

   # compiles a while statement
   def compile_while(self):
      # labels for this while loop
      self.while_index += 1
      while_start = "WHILE_START_%d" % (self.while_index)
      while_end = "WHILE_END_%d" % (self.while_index)

      # while keyword
      tt, t = self._token_next(False, "KEYWORD", "while")

      # opening parenthesis
      tt, t = self._token_next(True, "SYMBOL", "(")

      # label for the start of the while statement
      self.vm_writer.write_label(while_start)

      # the expression that is the condition of the while statement
      self.tokenizer.advance()
      self.compile_expression()

      # the closing parenthesis
      tt, t = self._token_next(False, "SYMBOL", ")")

      # the result of the evaluation is now on the stack
      # if false, then goto to the end of the loop
      # to do this, negate and then call if-goto
      self.vm_writer.write_arithmetic("not")
      self.vm_writer.write_if(while_end)

      # the opening brace
      tt, t = self._token_next(True, "SYMBOL", "{")

      # the statments that is the body of the while loop
      self.tokenizer.advance()
      self.compile_statements()

      # the closing brace
      tt, t = self._token_next(False, "SYMBOL", "}")

      # after the last statement of the while loop
      # need to jump back up to the top of the loop to evaluate again
      self.vm_writer.write_goto(while_start)

      # label at the end of the loop
      self.vm_writer.write_label(while_end)

      self.tokenizer.advance()

   # compiles a return statement
   def compile_return(self):
      # return keyword
      tt, t = self._token_next(False, "KEYWORD", "return")

      # possible expression to return
      tt, t = self._token_next(True)
      if tt != "SYMBOL" and t != ";":
         self.compile_expression()
      else:
         # no return expression; return 0
         self.vm_writer.write_push(self.vm_writer.CONST, 0)

      # ending semicolon
      tt, t = self._token_next(False, "SYMBOL", ";")

      self.vm_writer.write_return()

      self.tokenizer.advance()

   # compiles a if statement, including a possible trailing else clause
   def compile_if(self):
      # it is more efficient in an if-else case to have the else portion first
      # in the code when testing, but we use the less-efficient but
      # easier-to-write true-false pattern here

      # labels for this if statement
      self.if_index += 1
      if_false = "IF_FALSE_%d" % (self.if_index)
      if_end = "IF_END_%d" % (self.if_index)

      # if keyword
      tt, t = self._token_next(False, "KEYWORD", "if")

      # opening parenthesis
      tt, t = self._token_next(True, "SYMBOL", "(")

      # expression of if statement
      self.tokenizer.advance()
      self.compile_expression()

      # closing parenthesis
      tt, t = self._token_next(False, "SYMBOL", ")")

      # the result of the evaluation is now on the stack
      # if false, then goto the false label
      # if true, fall through to executing code
      # if there is no else, then false and end are the same, but having two
      # labels does not increase code size
      self.vm_writer.write_arithmetic("not")
      self.vm_writer.write_if(if_false)

      # opening brace
      tt, t = self._token_next(True, "SYMBOL", "{")

      # statements for true portion
      self.tokenizer.advance()
      self.compile_statements()

      # closing brace
      tt, t = self._token_next(False, "SYMBOL", "}")

      tt, t = self._token_next(True)
      if tt == "KEYWORD" and t == "else":
         # else statement exists

         # goto the end of the if statement at the end of the true portion
         self.vm_writer.write_goto(if_end)

         # label for the start of the false portion
         self.vm_writer.write_label(if_false)

         # opening brace
         tt, t = self._token_next(True, "SYMBOL", "{")

         # statements
         self.tokenizer.advance()
         self.compile_statements()

         # closing brace
         tt, t = self._token_next(False, "SYMBOL", "}")

         # end label
         self.vm_writer.write_label(if_end)

         # advance tokenizer only if we are in the else, since otherwise the
         # token was advanced by the else check
         self.tokenizer.advance()
      else:
         # no else portion; only put in a label for false, since end is not
         # used
         self.vm_writer.write_label(if_false)

   # compiles an expression (one or more terms connected by operators)
   def compile_expression(self):
      # the first term
      self.compile_term()

      # finish any number of operators followed by terms
      while True:
         tt, t = self._token_next(False)
         if tt == "SYMBOL" and t in "+-*/&|<>=":
            # found an operator
            # postfix order - add the next term and then do the operator

            # the next term
            self.tokenizer.advance()
            self.compile_term()

            # the operator
            if t == "+":
               self.vm_writer.write_arithmetic("add")
            if t == "-":
               self.vm_writer.write_arithmetic("sub")
            if t == "=":
               self.vm_writer.write_arithmetic("eq")
            if t == ">":
               self.vm_writer.write_arithmetic("gt")
            if t == "<":
               self.vm_writer.write_arithmetic("lt")
            if t == "&":
               self.vm_writer.write_arithmetic("and")
            if t == "|":
               self.vm_writer.write_arithmetic("or")
            if t == "*":
               self.vm_writer.write_call("Math.multiply", 2)
            if t == "/":
               self.vm_writer.write_call("Math.divide", 2)
         else:
            # no term found; done parsing the expression
            break

   # compiles a term
   # this routine is faced with a slight difficulty when trying to decide
   # between some of the alternative parsing rules. specifically, if the
   # current token is an identifier, the routine must distinguish between a
   # variable, an array entry, and a subroutine call. a single lookahead token,
   # which may be one of [, (, or ., suffices to distinguish between the three
   # possibilities. any other token is not part of this term and should not
   # be advanced over.
   def compile_term(self):
      # a term: integer_constant | string_constant | keyword_constant |
      # varname | varname[expression] | subroutine_call | (expression) |
      # unary_op term
      tt, t = self._token_next(False)
      if tt == "INT_CONST":
         self.vm_writer.write_push(self.vm_writer.CONST, t)

         # advance for the next statement
         self.tokenizer.advance()
      elif tt == "STRING_CONST":
         # after this portion is run, a pointer to a string should be on the
         # stack
         # we create a new string of a certain size and then append characters
         # one by one; each append operation returns the pointer to the same
         # string

         # create the string
         # string is a len, data tuple; not null-terminated
         size = len(t)
         self.vm_writer.write_push(self.vm_writer.CONST, size)
         self.vm_writer.write_call("String.new", 1)

         # append each character
         for char in t:
            self.vm_writer.write_push(self.vm_writer.CONST, ord(char))
            self.vm_writer.write_call("String.appendChar", 2)

         # advance for the next statement
         self.tokenizer.advance()
      elif tt == "KEYWORD":
         if t == "true":
            # true is -1, which is 0 negated
            self.vm_writer.write_push(self.vm_writer.CONST, 0)
            self.vm_writer.write_arithmetic("not")
         elif t == "false" or t == "null":
            self.vm_writer.write_push(self.vm_writer.CONST, 0)
         elif t == "this":
            self.vm_writer.write_push(self.vm_writer.POINTER, 0)

         # advance for the next statement
         self.tokenizer.advance()
      elif tt == "SYMBOL" and t == "(":
         # ( expression )

         # parse the expression
         self.tokenizer.advance()
         self.compile_expression()

         # closing parenthesis
         tt, t = self._token_next(False, "SYMBOL", ")")

         # advance for the next statement
         self.tokenizer.advance()

      elif tt == "SYMBOL" and t in "-~":
         # unary_op term
         # postfix order - add the next term and then do the operator

         # parse the rest of the term
         self.tokenizer.advance()
         self.compile_term()

         # write the unary operation
         if t == "-":
            self.vm_writer.write_arithmetic("neg")
         elif t == "~":
            self.vm_writer.write_arithmetic("not")

      elif tt == "IDENTIFIER":
         # varname, varname[expression], subroutine_call

         # do not write the identifer yet

         # get the next bit of the expression
         # if it is a [, then array; if it is a ( or ., then subroutine call
         # if none of above, then pass over
         tt2, t2 = self._token_next(True)

         if tt2 == "SYMBOL" and t2 in "(.":
            # subroutine call
            # back up and then compile the subroutine call
            self.tokenizer.retreat()

            self.compile_subroutine_call()
         elif tt2 == "SYMBOL" and t2 == "[":
            # array - read operation

            # write the base address onto the stack
            segment, index = self._resolve_symbol(t)
            self.vm_writer.write_push(segment, index)

            # compile the offset expression
            self.tokenizer.advance()
            self.compile_expression()

            # add base and offset
            self.vm_writer.write_arithmetic("add")

            # put the resulting address into pointer 1 (that)
            self.vm_writer.write_pop(self.vm_writer.POINTER, 1)

            # read from that 0 onto the stack
            self.vm_writer.write_push(self.vm_writer.THAT, 0)

            # closing bracket
            tt, t = self._token_next(False, "SYMBOL", "]")

            # advance for the next statement
            self.tokenizer.advance()
         else:
            # none of above - just a single identifier
            segment, index = self._resolve_symbol(t)
            self.vm_writer.write_push(segment, index)

      else:
         # unknown
         print "WARNING: Unknown term expression object:", tt, t

   # compiles a (possible empty) comma-separated list of expressions
   def compile_expression_list(self):
      num_args = 0

      # check for empty list
      tt, t = self._token_next(False)
      if tt == "SYMBOL" and t == ")":
         # the parameter list was empty; do not process any more
         pass
      else:
         # there are things in the parameter list
         while True:
            # expression to pass
            self.compile_expression()
            num_args += 1

            # possible comma
            tt, t = self._token_next(False)
            if tt == "SYMBOL" and t == ",":
               self.tokenizer.advance()
            else:
               # not a comma; stop processing parameters
               break

      return num_args

   # compiles a subroutine call
   # two cases:
   # - subroutineName(expressionList)
   # - (class|var).subroutineName(expressionList)
   def compile_subroutine_call(self):
      # first part of name
      tt, name1 = self._token_next(False, "IDENTIFIER")

      # a dot and another name may exist, or it could be a parenthesis
      name2 = None
      tt, t = self._token_next(True)
      if tt == "SYMBOL" and t == ".":
         # the name after the dot
         tt, name2 = self._token_next(True, "IDENTIFIER")

         # advance so that we are on the parenthesis
         self.tokenizer.advance()

      # determine if this is a method call
      # three possibilities
      # - class.func() - function call
      # - var.func()   - method call
      # - func()       - method call on current object
      if self.symbol_table.contains(name1):
         method_call = True
         local_call = False
      elif name2 == None:
         method_call = True
         local_call = True
      else:
         method_call = False

      # if a method call, push variable name1
      # this a method call if the symbol table contains name1 and name2 exists
      # OR name1 is a method in the current object
      if method_call and local_call:
         # push the current object onto the stack as a hidden argument
         self.vm_writer.write_push(self.vm_writer.POINTER, 0)
      elif method_call and not local_call:
         # push the variable onto the stack as a hidden argument
         segment, index = self._resolve_symbol(name1)
         self.vm_writer.write_push(segment, index)

      # opening parenthesis
      tt, t = self._token_next(False, "SYMBOL", "(")

      # expression list
      self.tokenizer.advance()
      num_args = self.compile_expression_list()

      # closing parenthesis
      tt, t = self._token_next(False, "SYMBOL", ")")

      # write the call
      if method_call and local_call:
         # methd + <blank>

         # get the name of the vm function to call
         classname = self.class_name
         vm_function_name = classname + "." + name1

         # increase arguments by 1, since there is the hidden "this"
         num_args += 1

         # make the call
         self.vm_writer.write_call(vm_function_name, num_args)

      elif method_call and not local_call:
         # variable name + method

         # get the name of the vm function to call
         classname = self.symbol_table.get(name1)[1]
         vm_function_name = classname + "." + name2

         # increase arguments by 1, since there is the hidden "this"
         num_args += 1

         # make the call
         self.vm_writer.write_call(vm_function_name, num_args)
      else:
         # get the name of the vm function to call
         vm_function_name = name1 + "." + name2

         # make the call
         self.vm_writer.write_call(vm_function_name, num_args)

      self.tokenizer.advance()

   # returns the token_type and token of the next token after advancing the
   # tokenizer before reading if advance is True
   def _token_next(self, advance=False, expected_type=None, expected_value=None):
      # advance the tokenizer, if requested
      if advance:
         self.tokenizer.advance()

      # get the token type and the token itself
      token_type = self.tokenizer.token_type()
      token = str(getattr(self.tokenizer, token_type.lower())())

      if expected_type and token_type != expected_type:
         print "WARNING: Type", token_type, "found; expected", expected_type
         import traceback, sys
         traceback.print_stack()
         sys.exit(1)
      if expected_value and token != expected_value:
         print "WARNING: Value", token, "found; expected", expected_value
         import traceback, sys
         traceback.print_stack()
         sys.exit(1)

      return token_type, token

   # convets a symbol table type into a segment type
   def _type_to_segment(self, type):
      if type == self.symbol_table.STATIC:
         return self.vm_writer.STATIC
      elif type == self.symbol_table.FIELD:
         return self.vm_writer.THIS
      elif type == self.symbol_table.ARG:
         return self.vm_writer.ARG
      elif type == self.symbol_table.VAR:
         return self.vm_writer.LOCAL
      else:
         print "ERROR: Bad type %s" % (str(type))
 
   # resolves the symbol from the symbol table
   # the segment and index is returned as a 2-tuple
   def _resolve_symbol(self, name):
      kind, type, index = self.symbol_table.get(name)
      return self._type_to_segment(kind), index
Exemple #2
0
class IlGenerator(object):
    @staticmethod
    def generate(modules, module, ast):
        self = IlGenerator(modules, module)
        self.stmts(self.function().new_block(), ast)
        return self.module

    def __init__(self, modules, module):
        self.modules = modules
        self.module = module
        self.functions = [
            self.module.new_function('main', types.Function([], types.UNIT))
        ]
        self.symbols = SymbolTable()

    def function(self):
        return self.functions[-1]

    def push_function(self, name, type, params, freevars):
        # Modifying new function to take in function reference.
        fn = self.module.new_function(name,
                                      type,
                                      params=params,
                                      parent=self.function().ref(),
                                      freevars=freevars)
        self.functions.append(fn)
        return fn

    def pop_function(self):
        return self.functions.pop()

    def new_register(self, regtype):
        return self.function().new_register(regtype)

    def stmts(self, blk, n):
        self.symbols = self.symbols.push()
        for kid in n.children:
            blk = self.stmt(blk, kid)
        self.symbols = self.symbols.pop()
        return blk

    def stmt(self, blk, n):
        return self.dispatch_stmt(
            blk, n, {
                "import": self.import_action,
                "decl": self.decl_action,
                "assign": self.assign_action,
                "expr-stmt": self.expr_stmt_action,
                "print": self.print_action,
                "if": self.if_action,
                "while": self.while_action,
                "label": self.label_action,
                "break": self.break_action,
                "continue": self.continue_action,
                "function": self.function_action,
                "return": self.return_action,
                "stmts": self.stmts,
            })

    def import_action(self, blk, n):
        # Create a new module.
        print("IMport")
        modules = generate(n.children[1])
        print("Done")
        for mod in modules:
            self.modules.add(mod)
        return blk

    def decl_action(self, blk, n):
        name = n.children[0].value
        dest = self.new_register(n.children[1].type)
        a, blk = self.expr(blk, dest, n.children[1])
        self.symbols[name] = a
        return blk

    def assign_action(self, blk, n):
        name = n.children[0].value
        dest = self.symbols[name]
        a, blk = self.expr(blk, dest, n.children[1])
        return blk

    def print_action(self, blk, n):
        a, blk = self.expr(blk, None, n.children[0])
        if isinstance(a, il.FunctionRef):
            closure = self.module.lookup(a).closure(self.module, self.symbols)
            if len(closure.captured) > 0:
                a, blk = self.create_closures(blk, closure)
        blk.append(il.Instruction(il.OPS['PRINT'], a, None, None))
        return blk

    def return_action(self, blk, n):
        a, blk = self.expr(blk, None, n.children[0])
        if isinstance(a, il.FunctionRef):
            closure = self.module.lookup(a).closure(self.module, self.symbols)
            if len(closure.captured) > 0:
                a, blk = self.create_closures(blk, closure)
        blk.append(il.Instruction(il.OPS['RTRN'], a, None, None))
        return blk

    def create_closures(self, blk, closure):
        ## Implements function closure creation
        registers = list()
        rewrite = dict()
        for name, operand in closure.captured.iteritems():
            if isinstance(operand, il.Closure):
                fn_ref = operand.fn
                operand, blk = self.create_closures(blk, operand)
                rewrite[fn_ref] = il.ClosureRegister(len(registers),
                                                     fn_ref.type())
            registers.append(operand)
        result = self.new_register(closure.fn.type())
        rewrite[closure.fn] = il.ClosureRegister(len(registers),
                                                 closure.fn.type())
        for idx, reg in enumerate(registers):
            rewrite[reg] = il.ClosureRegister(idx, reg.type())
        closure_code = self.rewrite(closure.fn, rewrite)
        blk.append(
            il.Instruction(il.OPS['CLOSURE'], closure_code.ref(), registers,
                           result))
        return result, blk

    def rewrite(self, fn_ref, rewrites):
        ## Implements function rewriting for closure creation
        old = self.module.lookup(fn_ref)
        new = self.push_function(old.name + '-closure', old.type(), old.params,
                                 list())
        new.locals = old.locals

        def replace(operand):
            if isinstance(operand, il.FunctionRef) and operand in rewrites:
                return rewrites[operand]
            elif isinstance(operand, il.Register) and operand in rewrites:
                return rewrites[operand]
            elif isinstance(operand, il.Register) and operand.fn == old.ref():
                return il.Register(operand.id, new.ref(), operand.type())
            elif isinstance(operand, list):
                return [replace(inner) for inner in operand]
            return operand

        for old_blk in old.blocks:
            new_blk = new.new_block()
            for inst in old_blk.code:
                new_blk.append(
                    il.Instruction(inst.op, replace(inst.a), replace(inst.b),
                                   replace(inst.result)))
        for idx, old_blk in enumerate(old.blocks):
            new_blk = new.blocks[idx]
            for link in old_blk.next:
                new_blk.link_to(new.blocks[link.target], link.link_type)
        self.pop_function()
        return new

    def if_action(self, entry, n):
        body = self.function().new_block()
        afterwards = self.function().new_block()

        # Evaluate the condition expr.
        cond, cond_out = self.expr(entry, None, n.children[0])

        # Evaluate the body of the conditional.
        body_out = self.stmts(body, n.children[1])

        # Always goes to the afterwards block after if loop.
        body_out.goto_link(afterwards)

        # If the cond is true, go to body else to afterwards.
        cond_out.if_link(cond, body, afterwards)
        return afterwards

    def while_action(self, entry, n):
        header = self.function().new_block()
        body = self.function().new_block()
        afterwards = self.function().new_block()
        return self._while_action(entry, n, header, body, afterwards)

    def _while_action(self, entry, n, header, body, afterwards):
        self.function().push_loop(header, afterwards)
        entry.goto_link(header)
        cond, cond_out = self.expr(header, None, n.children[0])
        cond_out.if_link(cond, body, afterwards)
        body_out = self.stmts(body, n.children[1])
        body_out.goto_link(header)
        self.function().pop_loop()
        return afterwards

    def label_action(self, entry, n):
        # Blocks for continue, body and exit.
        continue_blk = self.function().new_block()
        body_blk = self.function().new_block()
        exit_blk = self.function().new_block()

        # Add label to the symbol table mapping to a LabeledLoop.
        label_name = n.children[0].value
        self.symbols[label_name] = il.LabeledLoop(continue_blk, exit_blk)

        # Use the internal while action to pass your own continue, body and exit_blks.
        afterwards = self._while_action(entry, n.children[1], continue_blk,
                                        body_blk, exit_blk)
        return afterwards

    def break_action(self, blk, n):

        # If no children, exit out of the nearest loop.
        if len(n.children) == 0:
            exit_blk = self.function().loop_exit()
        else:
            # Find the labelled loop record in the symbol_table.
            # Retrieve the exit blk of the loop.
            label = n.children[0].value
            exit_blk = self.symbols[label].exit_blk

        # Add a goto link to the exit block of the corresponding loop.
        blk.goto_link(exit_blk)

        # Create a new empty block and return for other instructions to be added.
        dead = self.function().new_block()
        return dead

    def continue_action(self, blk, n):
        if len(n.children) == 0:
            header = self.function().loop_cont()
        else:
            label = n.children[0].value
            header = self.symbols[label].continue_blk
        blk.goto_link(header)
        dead = self.function().new_block()
        return dead

    def expr_stmt_action(self, blk, n):
        _, blk = self.expr(blk, None, n.children[0])
        return blk

    def function_action(self, blk, n):
        function_type = n.children[2].value
        name = n.children[0].value
        body = n.children[3]
        params = [
            il.Param(id=idx, name=param.children[0].value, type=param.type)
            for idx, param in enumerate(n.children[1].children)
        ]
        free = freevars(n)

        # Push the function into the function list.
        # self.function() returns this function now.
        fn = self.push_function(name, function_type, params, free)

        # Add function reference to the symbol table of the calling function.
        self.symbols[fn.name] = fn.ref()

        # Push a new symbol table for the function.
        self.symbols = self.symbols.push()

        # Create a new block for the function.
        function_block = fn.new_block()
        for i, param in enumerate(params):

            # Create a local register for each parameter.
            param_register = fn.new_register(param.type)

            # Add the parameter to symbol_table.
            self.symbols[param.name] = param_register

            # Append PRM instructions to the function_block.
            # This instruction gives the id of each parameter which can be
            # referenced by the called function to lookup the parameter value
            # in the params of the function frame.
            function_block.append(
                il.Instruction(il.OPS['PRM'],
                               il.Constant(param.id,
                                           param.type), None, param_register))

        # Fill out instructions in the function_block.
        self.stmts(function_block, body)

        # Remove the function from the function list.
        # After this call, self.function() should not return this function.
        self.pop_function()
        return blk

    def expr(self, blk, result, n):
        return self.dispatch_expr(
            blk, result, n, {
                "negate": self.negate,
                "+": self.binop(il.OPS['ADD']),
                "-": self.binop(il.OPS['SUB']),
                "*": self.binop(il.OPS['MUL']),
                "/": self.binop(il.OPS['DIV']),
                "%": self.binop(il.OPS['MOD']),
                "==": self.binop(il.OPS['EQ']),
                "!=": self.binop(il.OPS['NE']),
                "<": self.binop(il.OPS['LT']),
                ">": self.binop(il.OPS['GT']),
                "<=": self.binop(il.OPS['LE']),
                ">=": self.binop(il.OPS['GE']),
                "not": self.not_op,
                "&&": self.and_op,
                "||": self.or_op,
                "call": self.call,
                "NAME": self.name,
                "INTEGER": self.number,
                "FLOAT": self.number,
            })

    def negate(self, blk, result, n):
        if result is None:
            result = self.new_register(n.type)
        a, blk = self.expr(blk, None, n.children[0])
        blk.append(
            il.Instruction(il.OPS['SUB'], il.Constant(0, n.type), a, result))
        return result, blk

    def binop(self, op):
        def binop(blk, result, n):
            if result is None:
                result = self.new_register(n.type)
            a, blk = self.expr(blk, None, n.children[0])
            b, blk = self.expr(blk, None, n.children[1])
            blk.append(il.Instruction(op, a, b, result))
            return result, blk

        return binop

    def not_op(self, blk, result, n):
        if not result:
            result = self.new_register(n.type)
        a, blk = self.expr(blk, result, n.children[0])
        blk.append(il.Instruction(il.OPS['NOT'], a, None, result))
        return result, blk

    def and_op(self, a_in_blk, result, n):
        if result is None:
            result = self.new_register(n.type)
        a, a_out_blk = self.expr(a_in_blk, result, n.children[0])

        b_in_blk = self.function().new_block()
        exit_blk = self.function().new_block()

        # If 1st condition true, go to second block, else exit block.
        a_out_blk.if_link(a, b_in_blk, exit_blk)
        #                     on-true    on-false
        b, b_out_blk = self.expr(b_in_blk, result, n.children[1])
        b_out_blk.goto_link(exit_blk)
        return result, exit_blk

    def or_op(self, a_in_blk, result, n):
        if result is None:
            result = self.new_register(n.type)
        a, a_out_blk = self.expr(a_in_blk, result, n.children[0])
        b_in_blk = self.function().new_block()
        exit_blk = self.function().new_block()
        a_out_blk.if_link(a, exit_blk, b_in_blk)
        #                    on-true   on-false
        b, b_out_blk = self.expr(b_in_blk, result, n.children[1])
        b_out_blk.goto_link(exit_blk)
        return result, exit_blk

    def call(self, blk, result, n):
        function_name = n.children[0].value
        exprs = n.children[1]
        parameters = []

        # Resolve each parameter
        for expr in exprs.children:
            r, _ = self.expr(blk, None, expr)
            parameters.append(r)

        if result is None:
            result = self.function().new_register(n.type)

        # SymbolTable returns the function reference.
        blk.append(
            il.Instruction(il.OPS['CALL'], self.symbols.get(function_name),
                           parameters, result))
        return result, blk

    def name(self, blk, result, n):
        if result is None:
            return self.symbols[n.value], blk
        blk.append(
            il.Instruction(il.OPS['MV'], self.symbols[n.value], None, result))
        return result, blk

    def number(self, blk, result, n):
        const = il.Constant(n.value, n.type)
        if result is None:
            return const, blk
        blk.append(il.Instruction(il.OPS['IMM'], const, None, result))
        return result, blk

    def dispatch_stmt(self, blk, n, labels_to_actions):
        for name, func in labels_to_actions.iteritems():
            if n.label == name:
                return func(blk, n)
        raise IlGenException("got '{}', want one of: {}".format(
            n.label, labels_to_actions.keys()))

    def dispatch_expr(self, blk, result, n, labels_to_actions):
        for name, func in labels_to_actions.iteritems():
            if n.label == name:
                return func(blk, result, n)
        raise IlGenException("got '{}', want one of: {}".format(
            n.label, labels_to_actions.keys()))