Exemple #1
0
def test_pdes_3d_1():
    print('============ test_pdes_3d_1 =============')

    # ... abstract model
    V = H1Space('V', ldim=3)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    a = BilinearForm((v, u), dot(grad(v), grad(u)))
    # ...

    # ... discretization
    # Input data: degree, number of elements
    p1 = 1
    p2 = 1
    p3 = 1
    ne1 = 4
    ne2 = 4
    ne3 = 4

    # Create uniform grid
    grid_1 = linspace(0., 1., num=ne1 + 1)
    grid_2 = linspace(0., 1., num=ne2 + 1)
    grid_3 = linspace(0., 1., num=ne3 + 1)

    # Create 1D finite element spaces and precompute quadrature data
    V1 = SplineSpace(p1, grid=grid_1)
    V1.init_fem()
    V2 = SplineSpace(p2, grid=grid_2)
    V2.init_fem()
    V3 = SplineSpace(p3, grid=grid_3)
    V3.init_fem()

    # Create 2D tensor product finite element space
    V = TensorFemSpace(V1, V2, V3)
    # ...

    # ...
    discretize_symbol(a, [V, V])
    #    print(mass.symbol.__doc__)
    # ...

    # ...
    n1 = 21
    n2 = 21
    n3 = 21

    t1 = linspace(-pi, pi, n1)
    t2 = linspace(-pi, pi, n2)
    t3 = linspace(-pi, pi, n3)
    x1 = linspace(0., 1., n1)
    x2 = linspace(0., 1., n2)
    x3 = linspace(0., 1., n3)

    xs = [x1, x2, x3]
    ts = [t1, t2, t3]

    e = a.symbol(*xs, *ts)
    print('> ', e.min(), e.max())
Exemple #2
0
def test_pdes_2d_2():
    print('============ test_pdes_2d_2 =============')

    # ... abstract model
    V = H1Space('V', ldim=2)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    c = Constant('c', real=True, label='mass stabilization')

    a = BilinearForm((v, u), dot(grad(v), grad(u)) + c * v * u)
    # ...

    # ... discretization
    # Input data: degree, number of elements
    p1 = 1
    p2 = 1
    ne1 = 4
    ne2 = 4

    # Create uniform grid
    grid_1 = linspace(0., 1., num=ne1 + 1)
    grid_2 = linspace(0., 1., num=ne2 + 1)

    # Create 1D finite element spaces and precompute quadrature data
    V1 = SplineSpace(p1, grid=grid_1)
    V1.init_fem()
    V2 = SplineSpace(p2, grid=grid_2)
    V2.init_fem()

    # Create 2D tensor product finite element space
    V = TensorFemSpace(V1, V2)
    # ...

    # ...
    discretize_symbol(a, [V, V])
    #    print(mass.symbol.__doc__)
    # ...

    # ...
    n1 = 21
    n2 = 21

    t1 = linspace(-pi, pi, n1)
    t2 = linspace(-pi, pi, n2)
    x1 = linspace(0., 1., n1)
    x2 = linspace(0., 1., n2)

    xs = [x1, x2]
    ts = [t1, t2]

    e = a.symbol(*xs, *ts, 0.25)
    print('> c = 0.25 :: ', e.min(), e.max())

    e = a.symbol(*xs, *ts, 0.6)
    print('> c = 0.6 :: ', e.min(), e.max())
Exemple #3
0
def test_gelatize_2d_4():
    print('============ test_gelatize_2d_4 =============')

    V = H1Space('V', ldim=2)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    expr = BilinearForm((v, u), dot(grad(v), grad(u)))

    print('> input     >>> {0}'.format(expr))
    print('> gelatized >>> {0}'.format(gelatize(expr)))
Exemple #4
0
def test_symbol_3d_2():
    print('============ test_symbol_3d_2 =============')

    # ... abstract model
    V = H1Space('V', ldim=3)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    mass = BilinearForm((v, u), u * v)
    laplace = BilinearForm((v, u), dot(grad(v), grad(u)))
    # ...

    # ...
    degrees = [1, 1, 1]

    symbol = compile_symbol('mass_symbol', mass, degrees)
    # ...

    # ...
    n1 = 21
    n2 = 21
    n3 = 21

    t1 = linspace(-pi, pi, n1)
    t2 = linspace(-pi, pi, n2)
    t3 = linspace(-pi, pi, n3)
    x1 = linspace(0., 1., n1)
    x2 = linspace(0., 1., n2)
    x3 = linspace(0., 1., n3)

    xs = [x1, x2, x3]
    ts = [t1, t2, t3]

    e = zeros((n1, n2, n3))
    # ...

    # ...
    n_elements = [4, 4, 4]
    symbol(*xs, *ts, e, *n_elements)
    print('> ', e.min(), e.max())
    # ...

    # ...
    n_elements = [4, 8, 8]
    symbol(*xs, *ts, e, *n_elements)
    print('> ', e.min(), e.max())
Exemple #5
0
def test_pdes_1d_1():
    print('============ test_pdes_1d_1 =============')

    # ... abstract model
    V = H1Space('V', ldim=1)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    a = BilinearForm((v,u), dot(grad(v), grad(u)))
    # ...

    # ... discretization
    # Input data: degree, number of elements
    p1  = 1
    ne1 = 4

    # Create uniform grid
    grid_1 = linspace( 0., 1., num=ne1+1 )

    # Create 1D finite element spaces and precompute quadrature data
    V = SplineSpace( p1, grid=grid_1 ); V.init_fem()
    # ...

    # ...
    discretize_symbol( a, [V,V] )
#    print(mass.symbol.__doc__)
    # ...

    # ...
    n1 = 21

    t1 = linspace(-pi, pi, n1)
    x1 = linspace(0.,1., n1)

    xs = [x1]
    ts = [t1]

    e = a.symbol(*xs, *ts)
    print('> ', e.min(), e.max())
Exemple #6
0
def test_gelatize_1d_1():
    print('============ test_gelatize_1d_1 =============')

    V = H1Space('V', ldim=1)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    nx = symbols('nx', integer=True)
    px = symbols('px', integer=True)
    tx = symbols('tx')

    c1 = Constant('c1')
    c2 = Constant('c2')
    c3 = Constant('c3')
    c4 = Constant('c4')

    # ...
    expected = Mass(px, tx) / nx
    assert (gelatize(BilinearForm((v, u), u * v)) == expected)
    # ...

    # ...
    expected = nx * Stiffness(px, tx)
    assert (gelatize(BilinearForm((v, u), dot(grad(v), grad(u)))) == expected)
    # ...

    # ...
    expected = I * Advection(px, tx)
    assert (gelatize(BilinearForm((v, u), dx(u) * v)) == expected)
    # ...

    # ...
    expected = c1 * Mass(px, tx) / nx + c2 * I * Advection(
        px, tx) - c3 * I * Advection(px, tx) + c4 * nx * Stiffness(px, tx)
    assert (gelatize(
        BilinearForm((v, u), c1 * v * u + c2 * dx(u) * v + c3 * dx(v) * u +
                     c4 * dx(v) * dx(u))) == expected)
Exemple #7
0
def test_symbol_2d_1():
    print('============ test_symbol_2d_1 =============')

    # ... abstract model
    V = H1Space('V', ldim=2)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    mass = BilinearForm((v, u), u * v)
    laplace = BilinearForm((v, u), dot(grad(v), grad(u)))
    # ...

    # ...
    degrees = [1, 1]
    n_elements = [4, 4]

    symbol = compile_symbol('mass_symbol',
                            mass,
                            degrees,
                            n_elements=n_elements)
    # ...

    # ...
    n1 = 101
    n2 = 101

    t1 = linspace(-pi, pi, n1)
    t2 = linspace(-pi, pi, n2)
    x1 = linspace(0., 1., n1)
    x2 = linspace(0., 1., n2)

    xs = [x1, x2]
    ts = [t1, t2]

    e = zeros((n1, n2))
    symbol(*xs, *ts, e)
    print('> ', e.min(), e.max())
Exemple #8
0
def test_gelatize_3d_1():
    print('============ test_gelatize_3d_1 =============')

    V = H1Space('V', ldim=3)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    nx, ny, nz = symbols('nx ny nz', integer=True)
    px, py, pz = symbols('px py pz', integer=True)
    tx, ty, tz = symbols('tx ty tz')

    c = Constant('c')

    bx = Constant('bx')
    by = Constant('by')
    bz = Constant('bz')
    b = Tuple(bx, by, bz)

    # ...
    expected = Mass(px, tx) * Mass(py, ty) * Mass(pz, tz) / (nx * ny * nz)
    assert (gelatize(BilinearForm((v, u), u * v)) == expected)
    # ...

    # ...
    expected = nx * Mass(py, ty) * Mass(pz, tz) * Stiffness(px, tx) / (ny * nz)
    assert (gelatize(BilinearForm((v, u), dx(u) * dx(v))) == expected)
    # ...

    # ...
    expected = I * Advection(py, ty) * Mass(px, tx) * Mass(pz, tz) / (nx * nz)
    assert (gelatize(BilinearForm((v, u), dy(u) * v)) == expected)
    # ...

    # ...
    expected = I * Advection(px, tx) * Mass(py, ty) * Mass(pz, tz) / (ny * nz)
    assert (gelatize(BilinearForm((v, u), dx(u) * v)) == expected)
    # ...

    # ...
    expected = (nx * Mass(py, ty) * Mass(pz, tz) * Stiffness(px, tx) /
                (ny * nz) +
                ny * Mass(px, tx) * Mass(pz, tz) * Stiffness(py, ty) /
                (nx * nz) +
                nz * Mass(px, tx) * Mass(py, ty) * Stiffness(pz, tz) /
                (nx * ny))
    assert (gelatize(BilinearForm((v, u), dot(grad(v), grad(u)))) == expected)
    # ...

    # ...
    expected = (
        nx * Mass(py, ty) * Mass(pz, tz) * Stiffness(px, tx) / (ny * nz) +
        I * Advection(px, tx) * Mass(py, ty) * Mass(pz, tz) / (ny * nz) +
        ny * Mass(px, tx) * Mass(pz, tz) * Stiffness(py, ty) / (nx * nz) +
        I * Advection(py, ty) * Mass(px, tx) * Mass(pz, tz) / (nx * nz) +
        nz * Mass(px, tx) * Mass(py, ty) * Stiffness(pz, tz) / (nx * ny))
    assert (gelatize(
        BilinearForm(
            (v, u),
            dot(grad(v), grad(u)) + dx(u) * v + dy(u) * v)) == expected)
    # ...

    # ...
    expected = (-bx * I * Advection(px, tx) * Mass(py, ty) * Mass(pz, tz) /
                (ny * nz) -
                by * I * Advection(py, ty) * Mass(px, tx) * Mass(pz, tz) /
                (nx * nz) -
                bz * I * Advection(pz, tz) * Mass(px, tx) * Mass(py, ty) /
                (nx * ny))
    assert (gelatize(BilinearForm((v, u), dot(b, grad(v)) * u)) == expected)
    # ...

    # ...
    expected = (bx**2 * nx * Mass(py, ty) * Mass(pz, tz) * Stiffness(px, tx) /
                (ny * nz) + 2 * bx * by * Advection(px, tx) *
                Advection(py, ty) * Mass(pz, tz) / nz + 2 * bx * bz *
                Advection(px, tx) * Advection(pz, tz) * Mass(py, ty) / ny +
                by**2 * ny * Mass(px, tx) * Mass(pz, tz) * Stiffness(py, ty) /
                (nx * nz) + 2 * by * bz * Advection(py, ty) *
                Advection(pz, tz) * Mass(px, tx) / nx +
                bz**2 * nz * Mass(px, tx) * Mass(py, ty) * Stiffness(pz, tz) /
                (nx * ny))
    assert (gelatize(BilinearForm(
        (v, u),
        dot(b, grad(v)) * dot(b, grad(u)))) == expected)
    # ...

    degrees = None
    #    degrees = [2, 1, 1]

    #    evaluate = True
    evaluate = False
Exemple #9
0
def test_gelatize_2d_1():
    print('============ test_gelatize_2d_1 =============')

    V = H1Space('V', ldim=2)

    v = TestFunction(V, name='v')
    u = TestFunction(V, name='u')

    nx, ny = symbols('nx ny', integer=True)
    px, py = symbols('px py', integer=True)
    tx, ty = symbols('tx ty')

    c = Constant('c')

    bx = Constant('bx')
    by = Constant('by')
    b = Tuple(bx, by)

    # ...
    expected = Mass(px, tx) * Mass(py, ty) / (nx * ny)
    assert (gelatize(BilinearForm((v, u), u * v)) == expected)
    # ...

    # ...
    expected = Mass(py, ty) * nx * Stiffness(px, tx) / ny
    assert (gelatize(BilinearForm((v, u), dx(u) * dx(v))) == expected)
    # ...

    # ...
    expected = I * Advection(py, ty) * Mass(px, tx) / nx
    assert (gelatize(BilinearForm((v, u), dy(u) * v)) == expected)
    # ...

    # ...
    expected = I * Advection(px, tx) * Mass(py, ty) / ny
    assert (gelatize(BilinearForm((v, u), dx(u) * v)) == expected)
    # ...

    # ...
    expected = Mass(px, tx) * ny * Stiffness(py, ty) / nx + Mass(
        py, ty) * nx * Stiffness(px, tx) / ny
    assert (gelatize(BilinearForm((v, u), dot(grad(v), grad(u)))) == expected)
    # ...

    # ...
    expected = (nx * Mass(py, ty) * Stiffness(px, tx) / ny +
                I * Advection(px, tx) * Mass(py, ty) / ny +
                ny * Mass(px, tx) * Stiffness(py, ty) / nx +
                I * Advection(py, ty) * Mass(px, tx) / nx)
    assert (gelatize(
        BilinearForm(
            (v, u),
            dot(grad(v), grad(u)) + dx(u) * v + dy(u) * v)) == expected)
    # ...

    # ...
    expected = -bx * I * Advection(px, tx) * Mass(
        py, ty) / ny - by * I * Advection(py, ty) * Mass(px, tx) / nx
    assert (gelatize(BilinearForm((v, u), dot(b, grad(v)) * u)) == expected)
    # ...

    # ...
    expected = bx**2 * nx * Mass(py, ty) * Stiffness(
        px, tx) / ny + 2 * bx * by * Advection(px, tx) * Advection(
            py, ty) + by**2 * ny * Mass(px, tx) * Stiffness(py, ty) / nx
    assert (gelatize(BilinearForm(
        (v, u),
        dot(b, grad(v)) * dot(b, grad(u)))) == expected)
    # ...

    degrees = None
    #    degrees = [2, 1]

    #    evaluate = True
    evaluate = False