def test_logical_expr_3d_5(): dim = 3 domain = Domain('Omega', dim=dim) M = Mapping('M', dim=dim) mapped_domain = M(domain) V = VectorFunctionSpace('V', domain, kind='hcurl') VM = VectorFunctionSpace('VM', mapped_domain, kind='hcurl') J = M.jacobian u, v = elements_of(V, names='u,v') um, vm = elements_of(VM, names='u,v') int_md = lambda expr: integral(mapped_domain, expr) int_ld = lambda expr: integral(domain, expr) am = BilinearForm((um, vm), int_md(dot(curl(vm), curl(um)))) a = LogicalExpr(am) assert a == BilinearForm( (u, v), int_ld( sqrt((J.T * J).det()) * dot(J / J.det() * curl(u), J / J.det() * curl(v))))
def test_bilinear_expr_2d_2(): domain = Domain('Omega', dim=2) x,y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu' , is_real=True) V = VectorFunctionSpace('V', domain) u,u1,u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']] v,v1,v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']] # ... a = BilinearExpr((u,v), dot(u,v)) print(a) print(a.expr) print(a(u1,v1)) # TODO # print(a(u1+u2,v1+v2)) print('') # ... # ... a1 = BilinearExpr((u,v), dot(u,v)) a2 = BilinearExpr((u,v), inner(grad(u),grad(v))) print(a1(u1,v1) + a2(u2,v2)) print('')
def test_terminal_expr_linear_2d_2(): domain = Domain('Omega', dim=2) B1 = Boundary(r'\Gamma_1', domain) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) V = VectorFunctionSpace('V', domain) u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']] v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']] # ... int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) g = Matrix((x, y)) l = LinearForm(v, int_0(dot(g, v))) print(TerminalExpr(l)) print('') # ... # ... g = Matrix((x, y)) l = LinearForm(v, int_0(dot(g, v) + div(v))) print(TerminalExpr(l)) print('')
def test_linearize_form_2d_4(): domain = Domain('Omega', dim=2) Gamma_N = Boundary(r'\Gamma_N', domain) x, y = domain.coordinates V = ScalarFunctionSpace('V', domain) v = element_of(V, name='v') u = element_of(V, name='u') du = element_of(V, name='du') int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(Gamma_N, expr) # g = Matrix((cos(pi*x)*sin(pi*y), # sin(pi*x)*cos(pi*y))) expr = dot(grad(v), grad(u)) - 4. * exp(-u) * v # + v*trace_1(g, Gamma_N) l = LinearForm(v, int_0(expr)) # linearising l around u, using du a = linearize(l, u, trials=du) assert a(du, v) == int_0(dot(grad(v), grad(du)) + 4. * exp(-u) * du * v)
def test_newton_2d_1(): # ... abstract model B1 = Boundary(r'\Gamma_1', domain) V = ScalarFunctionSpace('V', domain) x, y = domain.coordinates Un = element_of(V, name='Un') v = element_of(V, name='v') int_0 = lambda expr: integral(domain, expr) f = -4. * exp(-Un) l = LinearForm(v, int_0(dot(grad(v), grad(Un)) - f * v)) u = element_of(V, name='u') eq = NewtonIteration(l, Un, trials=u) # ... # ... expected = int_0(-4.0 * u * v * exp(-Un) + dot(grad(u), grad(v))) assert (eq.lhs.expr == expected) # ... # ... bc = EssentialBC(u, 0, B1) eq = NewtonIteration(l, Un, bc=bc, trials=u)
def test_equation_2d_3(): V = ScalarFunctionSpace('V', domain) v = element_of(V, name='v') u = element_of(V, name='u') x, y = domain.coordinates B1 = Boundary(r'\Gamma_1', domain) int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... bilinear/linear forms a1 = BilinearForm((v, u), int_0(dot(grad(v), grad(u)))) a2 = BilinearForm((v, u), int_0(v * u)) l1 = LinearForm(v, int_0(x * y * v)) l2 = LinearForm(v, int_0(cos(x + y) * v)) # ... # ... bc = EssentialBC(u, 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc) # ... # ... nn = NormalVector('nn') bc = EssentialBC(dot(grad(u), nn), 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
def test_equation_2d_4(): V = VectorFunctionSpace('V', domain) v = element_of(V, name='v') u = element_of(V, name='u') x, y = domain.coordinates B1 = Boundary(r'\Gamma_1', domain) int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... bilinear/linear forms a1 = BilinearForm((v, u), int_0(inner(grad(v), grad(u)))) f = Tuple(x * y, sin(pi * x) * sin(pi * y)) l1 = LinearForm(v, int_0(dot(f, v))) # ... # ... bc = EssentialBC(u, 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc) # ... # ... bc = EssentialBC(u[0], 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc) # ... # ... nn = NormalVector('nn') bc = EssentialBC(dot(u, nn), 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
def test_linear_expr_2d_2(): domain = Domain('Omega', dim=2) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) V = VectorFunctionSpace('V', domain) u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']] v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']] g = Tuple(x, y) l = LinearExpr(v, dot(g, v)) print(l) print(l.expr) print(l(v1)) # TODO # print(l(v1+v2)) print('') # ... # ... g1 = Tuple(x, 0) g2 = Tuple(0, y) l = LinearExpr((v1, v2), dot(g1, v1) + dot(g2, v2)) print(l) print(l.expr) print(l(u1, u2)) # TODO # print(l(u1+v1, u2+v2)) print('')
def test_terminal_expr_bilinear_2d_2(): domain = Domain('Omega', dim=2) B1 = Boundary(r'\Gamma_1', domain) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) nn = NormalVector('nn') V = VectorFunctionSpace('V', domain) u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']] v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']] # ... int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) a = BilinearForm((u, v), int_0(dot(u, v))) print(TerminalExpr(a)) print('') # ... a = BilinearForm((u, v), int_0(inner(grad(u), grad(v)))) print(TerminalExpr(a)) print('') # ... # ... a = BilinearForm((u, v), int_0(dot(u, v) + inner(grad(u), grad(v)))) print(TerminalExpr(a)) print('')
def test_linearize_form_2d_3(): """steady Euler equation.""" domain = Domain('Omega', dim=2) U = VectorFunctionSpace('U', domain) W = ScalarFunctionSpace('W', domain) # Test functions v = element_of(U, name='v') phi = element_of(W, name='phi') q = element_of(W, name='q') # Steady-state fields U_0 = element_of(U, name='U_0') Rho_0 = element_of(W, name='Rho_0') P_0 = element_of(W, name='P_0') # Trial functions (displacements from steady-state) d_u = element_of(U, name='d_u') d_rho = element_of(W, name='d_rho') d_p = element_of(W, name='d_p') # Shortcut int_0 = lambda expr: integral(domain, expr) # The Euler equations are a system of three non-linear equations; for each of # them we create a linear form in the test functions (phi, v, q) respectively. e1 = div(Rho_0 * U_0) l1 = LinearForm(phi, int_0(e1 * phi)) e2 = Rho_0 * convect(U_0, U_0) + grad(P_0) l2 = LinearForm(v, int_0(dot(e2, v))) e3 = div(P_0 * U_0) l3 = LinearForm(q, int_0(e3 * q)) # ... # Linearize l1, l2 and l3 separately a1 = linearize(l1, fields=[Rho_0, U_0], trials=[d_rho, d_u]) a2 = linearize(l2, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p]) a3 = linearize(l3, fields=[U_0, P_0], trials=[d_u, d_p]) # Check individual bilinear forms d_e1 = div(U_0 * d_rho + Rho_0 * d_u) d_e2 = d_rho * convect(U_0, U_0) + \ Rho_0 * convect(d_u, U_0) + \ Rho_0 * convect(U_0, d_u) + grad(d_p) d_e3 = div(d_p * U_0 + P_0 * d_u) assert a1([d_rho, d_u], phi) == int_0(d_e1 * phi) assert a2([d_rho, d_u, d_p], v) == int_0(dot(d_e2, v)) assert a3([d_u, d_p], q) == int_0(d_e3 * q) # Linearize linear form of system: l = l1 + l2 + l3 l = LinearForm((phi, v, q), l1(phi) + l2(v) + l3(q)) a = linearize(l, fields=[Rho_0, U_0, P_0], trials=[d_rho, d_u, d_p]) # Check composite linear form assert a([d_rho, d_u, d_p], [phi, v, q]) == \ int_0(d_e1 * phi + dot(d_e2, v) + d_e3 * q)
def test_terminal_expr_bilinear_3d_1(): domain = Domain('Omega', dim=3) M = Mapping('M', 3) mapped_domain = M(domain) V = ScalarFunctionSpace('V', domain) VM = ScalarFunctionSpace('VM', mapped_domain) u, v = elements_of(V, names='u,v') um, vm = elements_of(VM, names='u,v') int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(mapped_domain, expr) J = M.det_jacobian det = dx1(M[0])*dx2(M[1])*dx3(M[2]) - dx1(M[0])*dx2(M[2])*dx3(M[1]) - dx1(M[1])*dx2(M[0])*dx3(M[2])\ + dx1(M[1])*dx2(M[2])*dx3(M[0]) + dx1(M[2])*dx2(M[0])*dx3(M[1]) - dx1(M[2])*dx2(M[1])*dx3(M[0]) a1 = BilinearForm((u, v), int_0(dot(grad(u), grad(v)))) a2 = BilinearForm((um, vm), int_1(dot(grad(um), grad(vm)))) a3 = BilinearForm((u, v), int_0(J * dot(grad(u), grad(v)))) e1 = TerminalExpr(a1) e2 = TerminalExpr(a2) e3 = TerminalExpr(a3) assert e1[0].expr == dx1(u) * dx1(v) + dx2(u) * dx2(v) + dx3(u) * dx3(v) assert e2[0].expr == dx(um) * dx(vm) + dy(um) * dy(vm) + dz(um) * dz(vm) assert e3[0].expr.factor() == (dx1(u) * dx1(v) + dx2(u) * dx2(v) + dx3(u) * dx3(v)) * det
def test_calculus_2d_1(): domain = Domain('Omega', dim=2) V = ScalarFunctionSpace('V', domain) W = VectorFunctionSpace('W', domain) alpha, beta, gamma = [Constant(i) for i in ['alpha', 'beta', 'gamma']] f, g, h = elements_of(V, names='f, g, h') F, G, H = elements_of(W, names='F, G, H') # ... scalar gradient properties assert (grad(f + g) == grad(f) + grad(g)) assert (grad(alpha * h) == alpha * grad(h)) assert (grad(alpha * f + beta * g) == alpha * grad(f) + beta * grad(g)) assert (grad(f * g) == f * grad(g) + g * grad(f)) assert (grad(f / g) == -f * grad(g) / g**2 + grad(f) / g) assert (expand(grad(f * g * h)) == f * g * grad(h) + f * h * grad(g) + g * h * grad(f)) # ... # ... vector gradient properties assert (grad(F + G) == grad(F) + grad(G)) assert (grad(alpha * H) == alpha * grad(H)) assert (grad(alpha * F + beta * G) == alpha * grad(F) + beta * grad(G)) assert (grad(dot(F, G)) == convect(F, G) + convect(G, F) + cross(F, curl(G)) - cross(curl(F), G)) # ... # ... curl properties assert (curl(f + g) == curl(f) + curl(g)) assert (curl(alpha * h) == alpha * curl(h)) assert (curl(alpha * f + beta * g) == alpha * curl(f) + beta * curl(g)) # ... # ... laplace properties assert (laplace(f + g) == laplace(f) + laplace(g)) assert (laplace(alpha * h) == alpha * laplace(h)) assert (laplace(alpha * f + beta * g) == alpha * laplace(f) + beta * laplace(g)) # ... # ... divergence properties assert (div(F + G) == div(F) + div(G)) assert (div(alpha * H) == alpha * div(H)) assert (div(alpha * F + beta * G) == alpha * div(F) + beta * div(G)) assert (div(cross(F, G)) == -dot(F, curl(G)) + dot(G, curl(F))) # ... # ... rot properties assert (rot(F + G) == rot(F) + rot(G)) assert (rot(alpha * H) == alpha * rot(H)) assert (rot(alpha * F + beta * G) == alpha * rot(F) + beta * rot(G))
def test_linearize_expr_2d_1(): domain = Domain('Omega', dim=2) x,y = domain.coordinates V1 = ScalarFunctionSpace('V1', domain) W1 = VectorFunctionSpace('W1', domain) v1 = element_of(V1, name='v1') w1 = element_of(W1, name='w1') alpha = Constant('alpha') F = element_of(V1, name='F') G = element_of(W1, 'G') # ... l = LinearExpr(v1, F**2*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, dot(grad(F), grad(F))*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, exp(-F)*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, cos(F)*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, cos(F**2)*v1) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(v1, F**2*dot(grad(F), grad(v1))) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearExpr(w1, dot(rot(G), grad(G))*w1) a = linearize(l, G, trials='u1') print(a)
def test_linearize_2d_1(): domain = Domain('Omega', dim=DIM) x, y = domain.coordinates V1 = FunctionSpace('V1', domain) W1 = VectorFunctionSpace('W1', domain) v1 = TestFunction(V1, name='v1') w1 = VectorTestFunction(W1, name='w1') alpha = Constant('alpha') F = Field('F', space=V1) G = VectorField(W1, 'G') # ... l = LinearForm(v1, F**2 * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, dot(grad(F), grad(F)) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, exp(-F) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, cos(F) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, cos(F**2) * v1, check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(v1, F**2 * dot(grad(F), grad(v1)), check=True) a = linearize(l, F, trials='u1') print(a) # ... # ... l = LinearForm(w1, dot(rot(G), grad(G)) * w1, check=True) a = linearize(l, G, trials='u1') print(a)
def test_essential_bc_1(): domain = Domain('Omega', dim=2) V = ScalarFunctionSpace('V', domain) W = VectorFunctionSpace('W', domain) v = element_of(V, name='v') w = element_of(W, name='w') B1 = Boundary(r'\Gamma_1', domain) nn = NormalVector('nn') # ... scalar case bc = EssentialBC(v, 0, B1) assert (bc.variable == v) assert (bc.order == 0) assert (bc.normal_component == False) assert (bc.index_component == None) # ... # ... scalar case bc = EssentialBC(dot(grad(v), nn), 0, B1) assert (bc.variable == v) assert (bc.order == 1) assert (bc.normal_component == False) assert (bc.index_component == None) # ... # ... vector case bc = EssentialBC(w, 0, B1) assert (bc.variable == w) assert (bc.order == 0) assert (bc.normal_component == False) assert (bc.index_component == [0, 1]) # ... # ... vector case bc = EssentialBC(dot(w, nn), 0, B1) assert (bc.variable == w) assert (bc.order == 0) assert (bc.normal_component == True) assert (bc.index_component == None) # ... # ... vector case bc = EssentialBC(w[0], 0, B1) assert (bc.variable == w) assert (bc.order == 0) assert (bc.normal_component == False) assert (bc.index_component == [0])
def test_latex_2d_5(): DIM = 2 domain = Domain('Omega', dim=DIM) # ... abstract model W1 = VectorFunctionSpace('W1', domain) w1 = element_of(W1, name='w1') F = element_of(W1, 'F') int_0 = lambda expr: integral(domain, expr) # ... l1 = LinearForm(w1, int_0(dot(w1, F))) print(latex(l1)) print('') # ... # ... l2 = LinearForm(w1, int_0(rot(w1) * rot(F) + div(w1) * div(F))) print(latex(l2)) print('')
def test_system_2d(): domain = Square() V = FunctionSpace('V', domain) x, y = V.coordinates u, v, p, q = [TestFunction(V, name=i) for i in ['u', 'v', 'p', 'q']] a1, a2, b1, b2 = [Constant(i, real=True) for i in ['a1', 'a2', 'b1', 'b2']] # ... a = BilinearForm((v, u), dot(grad(u), grad(v))) m = BilinearForm((v, u), u * v) expr = a(p, u) + a1 * m(p, u) + b1 * m(p, v) + a( q, v) + a2 * m(q, u) + b2 * m(q, v) b = BilinearForm(((p, q), (u, v)), expr) print(evaluate(b, verbose=True)) # ... # ... f1 = x * y f2 = x + y l1 = LinearForm(p, f1 * p) l2 = LinearForm(q, f2 * q) expr = l1(p) + l2(q) l = LinearForm((p, q), expr) print(evaluate(l, verbose=True))
def test_calls_2d_3(): domain = Square() V = FunctionSpace('V', domain) x, y = domain.coordinates pn = Field('pn', V) wn = Field('wn', V) dp = TestFunction(V, name='dp') dw = TestFunction(V, name='dw') tau = TestFunction(V, name='tau') sigma = TestFunction(V, name='sigma') Re = Constant('Re', real=True) dt = Constant('dt', real=True) alpha = Constant('alpha', real=True) l1 = LinearForm(tau, bracket(pn, wn) * tau - 1. / Re * dot(grad(tau), grad(wn))) # ... l = LinearForm((tau, sigma), dt * l1(tau)) print(evaluate(l, verbose=True))
def test_assembly_bilinear_form_2d_1(): a = BilinearForm((u,v), integral(domain, dot(grad(u), grad(v)))) ast = AST(a) stmt = parse(ast.expr, settings={'dim': ast.dim, 'nderiv': ast.nderiv}) print(pycode(stmt)) print()
def test_bilinear_form_2d_4(): domain = Domain('Omega', dim=2) B1 = Boundary(r'\Gamma_1', domain) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) V = VectorFunctionSpace('V', domain) u, u1, u2 = [element_of(V, name=i) for i in ['u', 'u1', 'u2']] v, v1, v2 = [element_of(V, name=i) for i in ['v', 'v1', 'v2']] int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... a = BilinearForm((u, v), int_0(dot(u, v))) assert (a.is_symmetric) # ... # ... a = BilinearForm((u, v), int_0(inner(grad(u), grad(v)))) assert (a.is_symmetric)
def test_user_function_2d_1(): domain = Domain('Omega', dim=2) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) # right hand side f = Function('f') V = FunctionSpace('V', domain) u, v = [TestFunction(V, name=i) for i in ['u', 'v']] # ... expr = dot(grad(u), grad(v)) + f(x, y) * u * v a = BilinearForm((v, u), expr) print(a) print(evaluate(a, verbose=True)) print('') # ... # ... expr = f(x, y) * v l = LinearForm(v, expr) print(l) print(evaluate(l, verbose=True)) print('')
def test_latex_2d_3(): DIM = 2 domain = Domain('Omega', dim=DIM) B1 = Boundary(r'\Gamma_1', domain) B2 = Boundary(r'\Gamma_2', domain) B3 = Boundary(r'\Gamma_3', domain) V = ScalarFunctionSpace('V', domain) x = V.coordinates v = element_of(V, name='v') u = element_of(V, name='u') int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... expr = dot(grad(v), grad(u)) a_0 = BilinearForm((v, u), int_0(expr)) expr = v * u a_bnd = BilinearForm((v, u), int_1(expr)) expr = a_0(v, u) + a_bnd(v, u) a = BilinearForm((v, u), expr) print(latex(a_0)) print(latex(a_bnd)) print(latex(a)) # print(a) print('')
def test_user_function_2d_1(): domain = Domain('Omega', dim=2) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) # right hand side f = Function('f') V = ScalarFunctionSpace('V', domain) u, v = [element_of(V, name=i) for i in ['u', 'v']] int_0 = lambda expr: integral(domain, expr) # ... expr = dot(grad(u), grad(v)) + f(x, y) * u * v a = BilinearForm((v, u), int_0(expr)) print(a) print(TerminalExpr(a)) print('') # ... # ... expr = f(x, y) * v l = LinearForm(v, int_0(expr)) print(l) print(TerminalExpr(l)) print('')
def test_logical_expr_2d_3(): dim = 2 A = Square('A') B = Square('B') M1 = Mapping('M1', dim=dim) M2 = Mapping('M2', dim=dim) D1 = M1(A) D2 = M2(B) domain = D1.join(D2, name='domain', bnd_minus=D1.get_boundary(axis=0, ext=1), bnd_plus=D2.get_boundary(axis=0, ext=-1)) V = VectorFunctionSpace('V', domain, kind='hcurl') u, v = [element_of(V, name=i) for i in ['u', 'v']] int_0 = lambda expr: integral(domain, expr) expr = LogicalExpr(int_0(dot(u, v)), domain) assert str( expr.args[0] ) == 'Integral(A, Dot((Jacobian(M1)**(-1)).T * u, (Jacobian(M1)**(-1)).T * v)*sqrt(det(Jacobian(M1).T * Jacobian(M1))))' assert str( expr.args[1] ) == 'Integral(B, Dot((Jacobian(M2)**(-1)).T * u, (Jacobian(M2)**(-1)).T * v)*sqrt(det(Jacobian(M2).T * Jacobian(M2))))'
def test_functional_2d_1(): domain = Domain('Omega', dim=2) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) V = ScalarFunctionSpace('V', domain) F = element_of(V, name='F') int_0 = lambda expr: integral(domain, expr) # ... expr = x * y a = Functional(int_0(expr), domain) print(a) print(TerminalExpr(a)) print('') # ... # ... expr = F - cos(2 * pi * x) * cos(3 * pi * y) expr = dot(grad(expr), grad(expr)) a = Functional(int_0(expr), domain) print(a) print(TerminalExpr(a)) print('')
def test_tensorize_2d_1_mapping(): DIM = 2 M = Mapping('Map', DIM) domain = Domain('Omega', dim=DIM) B1 = Boundary(r'\Gamma_1', domain) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) V = ScalarFunctionSpace('V', domain) u, v = elements_of(V, names='u, v') int_0 = lambda expr: integral(domain, expr) # ... # a = BilinearForm((u,v), u*v) # a = BilinearForm((u,v), mu*u*v + dot(grad(u),grad(v))) a = BilinearForm((u, v), int_0(dot(grad(u), grad(v)))) # a = BilinearForm((u,v), dx(u)*v) # a = BilinearForm((u,v), laplace(u)*laplace(v)) expr = TensorExpr(a, mapping=M) print(expr)
def test_tensorize_2d_3(): domain = Domain('Omega', dim=2) V = ScalarFunctionSpace('V', domain) u, v = elements_of(V, names='u,v') bx = Constant('bx') by = Constant('by') b = Tuple(bx, by) expr = integral(domain, dot(b, grad(v)) * dot(b, grad(u))) a = BilinearForm((u, v), expr) print(TensorExpr(a)) print('')
def test_bilinear_form_2d_1(): domain = Domain('Omega', dim=2) B1 = Boundary(r'\Gamma_1', domain) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) eps = Constant('eps', real=True) V = FunctionSpace('V', domain) u, u1, u2 = [TestFunction(V, name=i) for i in ['u', 'u1', 'u2']] v, v1, v2 = [TestFunction(V, name=i) for i in ['v', 'v1', 'v2']] # ... d_forms = {} d_forms['a1'] = BilinearForm((u, v), u * v) d_forms['a2'] = BilinearForm((u, v), u * v + dot(grad(u), grad(v))) d_forms['a3'] = BilinearForm((u, v), v * trace_1(grad(u), B1)) # Poisson with Nitsch method a0 = BilinearForm((u, v), dot(grad(u), grad(v))) a_B1 = BilinearForm( (u, v), -kappa * u * trace_1(grad(v), B1) - v * trace_1(grad(u), B1) + trace_0(u, B1) * trace_0(v, B1) / eps) a = BilinearForm((u, v), a0(u, v) + a_B1(u, v)) d_forms['a4'] = a # ... # ... calls d_calls = {} for name, a in d_forms.items(): d_calls[name] = a(u1, v1) # ... # ... export forms for name, expr in d_forms.items(): export(expr, 'biform_2d_{}.png'.format(name)) # ... # ... export calls for name, expr in d_calls.items(): export(expr, 'biform_2d_call_{}.png'.format(name))
def test_tensorize_3d(): V = FunctionSpace('V', domain) U = FunctionSpace('U', domain) W1 = VectorFunctionSpace('W1', domain) T1 = VectorFunctionSpace('T1', domain) v = TestFunction(V, name='v') u = TestFunction(U, name='u') w1 = VectorTestFunction(W1, name='w1') t1 = VectorTestFunction(T1, name='t1') x,y,z = domain.coordinates alpha = Constant('alpha') # ... expr = dot(grad(v), grad(u)) a = BilinearForm((v,u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = x*dx(v)*dx(u) + y*dy(v)*dy(u) a = BilinearForm((v,u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = sin(x)*dx(v)*dx(u) a = BilinearForm((v,u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = dot(curl(w1), curl(t1)) + div(w1)*div(t1) a = BilinearForm((w1, t1), expr, name='a') print(a) print(tensorize(a)) print('')
def test_bilinearity_2d_1(): domain = Square() x, y = domain.coordinates alpha = Constant('alpha') beta = Constant('beta') f1 = x * y f2 = x + y f = Tuple(f1, f2) V = FunctionSpace('V', domain) # TODO improve: naming are not given the same way G = Field('G', V) p, q = [TestFunction(V, name=i) for i in ['p', 'q']] ##################################### # linear expressions ##################################### # ... expr = p * q assert (is_bilinear_form(expr, (p, q))) # ... # ... expr = dot(grad(p), grad(q)) assert (is_bilinear_form(expr, (p, q))) # ... # ... expr = alpha * dot(grad(p), grad(q)) + beta * p * q + laplace(p) * laplace(q) assert (is_bilinear_form(expr, (p, q))) # ... ##################################### ##################################### # nonlinear expressions ##################################### # ... with pytest.raises(UnconsistentLinearExpressionError): expr = alpha * dot(grad(p**2), grad(q)) + beta * p * q is_bilinear_form(expr, (p, q))