def test_system_2d(): domain = Square() V = FunctionSpace('V', domain) x, y = V.coordinates u, v, p, q = [TestFunction(V, name=i) for i in ['u', 'v', 'p', 'q']] a1, a2, b1, b2 = [Constant(i, real=True) for i in ['a1', 'a2', 'b1', 'b2']] # ... a = BilinearForm((v, u), dot(grad(u), grad(v))) m = BilinearForm((v, u), u * v) expr = a(p, u) + a1 * m(p, u) + b1 * m(p, v) + a( q, v) + a2 * m(q, u) + b2 * m(q, v) b = BilinearForm(((p, q), (u, v)), expr) print(evaluate(b, verbose=True)) # ... # ... f1 = x * y f2 = x + y l1 = LinearForm(p, f1 * p) l2 = LinearForm(q, f2 * q) expr = l1(p) + l2(q) l = LinearForm((p, q), expr) print(evaluate(l, verbose=True))
def test_latex_2d_3(): DIM = 2 domain = Domain('Omega', dim=DIM) B1 = Boundary(r'\Gamma_1', domain) B2 = Boundary(r'\Gamma_2', domain) B3 = Boundary(r'\Gamma_3', domain) V = ScalarFunctionSpace('V', domain) x = V.coordinates v = element_of(V, name='v') u = element_of(V, name='u') int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... expr = dot(grad(v), grad(u)) a_0 = BilinearForm((v, u), int_0(expr)) expr = v * u a_bnd = BilinearForm((v, u), int_1(expr)) expr = a_0(v, u) + a_bnd(v, u) a = BilinearForm((v, u), expr) print(latex(a_0)) print(latex(a_bnd)) print(latex(a)) # print(a) print('')
def test_equation_2d_3(): V = ScalarFunctionSpace('V', domain) v = element_of(V, name='v') u = element_of(V, name='u') x, y = domain.coordinates B1 = Boundary(r'\Gamma_1', domain) int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... bilinear/linear forms a1 = BilinearForm((v, u), int_0(dot(grad(v), grad(u)))) a2 = BilinearForm((v, u), int_0(v * u)) l1 = LinearForm(v, int_0(x * y * v)) l2 = LinearForm(v, int_0(cos(x + y) * v)) # ... # ... bc = EssentialBC(u, 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc) # ... # ... nn = NormalVector('nn') bc = EssentialBC(dot(grad(u), nn), 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
def test_equation_2d_5(): domain = Square() x, y = domain.coordinates f0 = Matrix([ 2 * pi**2 * sin(pi * x) * sin(pi * y), 2 * pi**2 * sin(pi * x) * sin(pi * y) ]) f1 = cos(pi * x) * cos(pi * y) W = VectorFunctionSpace('W', domain) V = ScalarFunctionSpace('V', domain) X = ProductSpace(W, V) F = element_of(W, name='F') G = element_of(V, name='G') u, v = [element_of(W, name=i) for i in ['u', 'v']] p, q = [element_of(V, name=i) for i in ['p', 'q']] int_0 = lambda expr: integral(domain, expr) a0 = BilinearForm((v, u), int_0(inner(grad(v), grad(u)))) print(' a0 done.') a1 = BilinearForm((q, p), int_0(p * q)) print(' a1 done.') a = BilinearForm(((v, q), (u, p)), a0(v, u) + a1(q, p)) print(' a done.') l0 = LinearForm(v, int_0(dot(f0, v))) l1 = LinearForm(q, int_0(f1 * q)) l = LinearForm((v, q), l0(v) + l1(q)) print('****************************') bc = EssentialBC(u, 0, domain.boundary) equation = Equation(a, l, tests=[v, q], trials=[u, p], bc=bc) # ... print('=======') print(equation.lhs.expr) print('') # ... # ... print('=======') print(equation.rhs.expr) print('')
def test_tensorize_2d(): domain = Domain('Omega', dim=DIM) V = FunctionSpace('V', domain) U = FunctionSpace('U', domain) W1 = VectorFunctionSpace('W1', domain) T1 = VectorFunctionSpace('T1', domain) v = TestFunction(V, name='v') u = TestFunction(U, name='u') w1 = VectorTestFunction(W1, name='w1') t1 = VectorTestFunction(T1, name='t1') x, y = domain.coordinates alpha = Constant('alpha') # ... expr = dot(grad(v), grad(u)) a = BilinearForm((v, u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = x * dx(v) * dx(u) + y * dy(v) * dy(u) a = BilinearForm((v, u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... expr = sin(x) * dx(v) * dx(u) a = BilinearForm((v, u), expr, name='a') print(a) print(tensorize(a)) print('') # ... # ... # expr = rot(w1)*rot(t1) + div(w1)*div(t1) expr = rot(w1) * rot(t1) #+ div(w1)*div(t1) a = BilinearForm((w1, t1), expr, name='a') print(a) print(tensorize(a)) print('')
def test_assembly_bilinear_form_2d_1(): a = BilinearForm((u,v), integral(domain, dot(grad(u), grad(v)))) ast = AST(a) stmt = parse(ast.expr, settings={'dim': ast.dim, 'nderiv': ast.nderiv}) print(pycode(stmt)) print()
def test_latex_2d_2(): DIM = 2 domain = Domain('Omega', dim=DIM) V = VectorFunctionSpace('V', domain) x, y = V.coordinates v = element_of(V, name='v') u = element_of(V, name='u') # F = element_of(V, name='F') int_0 = lambda expr: integral(domain, expr) assert (latex(v) == r'\mathbf{v}') assert (latex(inner( grad(v), grad(u))) == r'\nabla{\mathbf{u}} : \nabla{\mathbf{v}}') a = BilinearForm((v, u), int_0(inner(grad(v), grad(u)))) print(latex(a)) # assert(latex(a) == r'\int_{0}^{1}\int_{0}^{1} \nabla{\mathbf{v}} : \nabla{\mathbf{u}} dxdy') b = LinearForm(v, int_0(sin(pi * x) * cos(pi * y) * div(v))) print(latex(b))
def test_user_function_2d_1(): domain = Domain('Omega', dim=2) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) # right hand side f = Function('f') V = FunctionSpace('V', domain) u, v = [TestFunction(V, name=i) for i in ['u', 'v']] # ... expr = dot(grad(u), grad(v)) + f(x, y) * u * v a = BilinearForm((v, u), expr) print(a) print(evaluate(a, verbose=True)) print('') # ... # ... expr = f(x, y) * v l = LinearForm(v, expr) print(l) print(evaluate(l, verbose=True)) print('')
def test_equation_2d_4(): V = VectorFunctionSpace('V', domain) v = element_of(V, name='v') u = element_of(V, name='u') x, y = domain.coordinates B1 = Boundary(r'\Gamma_1', domain) int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) # ... bilinear/linear forms a1 = BilinearForm((v, u), int_0(inner(grad(v), grad(u)))) f = Tuple(x * y, sin(pi * x) * sin(pi * y)) l1 = LinearForm(v, int_0(dot(f, v))) # ... # ... bc = EssentialBC(u, 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc) # ... # ... bc = EssentialBC(u[0], 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc) # ... # ... nn = NormalVector('nn') bc = EssentialBC(dot(u, nn), 0, B1) eq = Equation(a1, l1, tests=v, trials=u, bc=bc)
def test_tensorize_2d_stokes(): domain = Domain('Omega', dim=DIM) # ... abstract model V = VectorFunctionSpace('V', domain) W = FunctionSpace('W', domain) v = VectorTestFunction(V, name='v') u = VectorTestFunction(V, name='u') p = TestFunction(W, name='p') q = TestFunction(W, name='q') a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a') b = BilinearForm((v, p), div(v) * p, name='b') A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A') # ... print(A) print(tensorize(A)) print('')
def test_evaluation_2d_1(): domain = Domain('Omega', dim=2) B_neumann = Boundary(r'\Gamma_1', domain) V = FunctionSpace('V', domain) W = VectorFunctionSpace('W', domain) p, q = [TestFunction(V, name=i) for i in ['p', 'q']] u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']] alpha = Constant('alpha') x, y = V.coordinates F = Field('F', space=V) a1 = BilinearForm((p, q), dot(grad(p), grad(q))) m = BilinearForm((p, q), p * q) a2 = BilinearForm((p, q), a1(p, q) + alpha * m(p, q)) a3 = BilinearForm((u, v), rot(u) * rot(v) + alpha * div(u) * div(v)) a11 = BilinearForm((v, u), inner(grad(v), grad(u))) a12 = BilinearForm((v, p), div(v) * p) a4 = BilinearForm(((v, q), (u, p)), a11(v, u) - a12(v, p) + a12(u, q)) l0 = LinearForm(p, F * p) l_neu = LinearForm(p, p * trace_1(grad(F), B_neumann)) l = LinearForm(p, l0(p) + l_neu(p)) # ... print(a1) print(evaluate(a1)) print('') # ... # ... print(a2) print(evaluate(a2)) print('') # ... # ... print(a3) print(evaluate(a3)) print('') # ... # ... print(a4) print(evaluate(a4)) print('') # ... # ... print(l) print(evaluate(l)) print('')
def test_evaluation_2d_2(): domain = Square() x, y = domain.coordinates f0 = Tuple(2 * pi**2 * sin(pi * x) * sin(pi * y), 2 * pi**2 * sin(pi * x) * sin(pi * y)) f1 = cos(pi * x) * cos(pi * y) W = VectorFunctionSpace('W', domain) V = FunctionSpace('V', domain) X = ProductSpace(W, V) # TODO improve: naming are not given the same way F = VectorField(W, name='F') G = Field('G', V) u, v = [VectorTestFunction(W, name=i) for i in ['u', 'v']] p, q = [TestFunction(V, name=i) for i in ['p', 'q']] a0 = BilinearForm((v, u), inner(grad(v), grad(u))) a1 = BilinearForm((q, p), p * q) a = BilinearForm(((v, q), (u, p)), a0(v, u) + a1(q, p)) l0 = LinearForm(v, dot(f0, v)) l1 = LinearForm(q, f1 * q) l = LinearForm((v, q), l0(v) + l1(q)) # ... print(a) print(evaluate(a)) print('') # ... # ... print(l) print(evaluate(l)) print('')
def test_equation_2d_2(): domain = Square() V = ScalarFunctionSpace('V', domain) x, y = domain.coordinates pn, wn = [element_of(V, name=i) for i in ['pn', 'wn']] dp = element_of(V, name='dp') dw = element_of(V, name='dw') tau = element_of(V, name='tau') sigma = element_of(V, name='sigma') Re = Constant('Re', real=True) dt = Constant('dt', real=True) alpha = Constant('alpha', real=True) int_0 = lambda expr: integral(domain, expr) s = BilinearForm((tau, sigma), int_0(dot(grad(tau), grad(sigma)))) m = BilinearForm((tau, sigma), int_0(tau * sigma)) b1 = BilinearForm((tau, dw), int_0(bracket(pn, dw) * tau)) b2 = BilinearForm((tau, dp), int_0(bracket(dp, wn) * tau)) l1 = LinearForm( tau, int_0(bracket(pn, wn) * tau - 1. / Re * dot(grad(tau), grad(wn)))) expr = m(tau, dw) - alpha * dt * b1(tau, dw) - dt * b2( tau, dp) - (alpha * dt / Re) * s(tau, dw) a = BilinearForm(((tau, sigma), (dp, dw)), int_0(expr)) l = LinearForm((tau, sigma), dt * l1(tau)) bc = [EssentialBC(dp, 0, domain.boundary)] bc += [EssentialBC(dw, 0, domain.boundary)] equation = Equation(a, l, tests=[tau, sigma], trials=[dp, dw], bc=bc)
def test_latex_2d_4(): DIM = 2 domain = Domain('Omega', dim=DIM) # ... abstract model V = VectorFunctionSpace('V', domain) W = ScalarFunctionSpace('W', domain) v = element_of(V, name='v') u = element_of(V, name='u') p = element_of(W, name='p') q = element_of(W, name='q') int_0 = lambda expr: integral(domain, expr) a = BilinearForm((v, u), int_0(inner(grad(v), grad(u)))) b = BilinearForm((v, p), int_0(div(v) * p)) A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q)) # ... print(latex(A)) # print(latex(tensorize(A))) print('')
def test_area_2d_1(): domain = Domain('Omega', dim=2) x, y = domain.coordinates mu = Constant('mu', is_real=True) e = ElementDomain(domain) area = Area(e) V = FunctionSpace('V', domain) u, v = [TestFunction(V, name=i) for i in ['u', 'v']] # ... a = BilinearForm((v, u), area * u * v)
def test_expr_mapping_2d(): F = Mapping('F', DIM) patch = Domain('Omega', dim=DIM) domain = F(patch) V = FunctionSpace('V', domain) v = TestFunction(V, name='v') u = TestFunction(V, name='u') x, y = V.coordinates a = BilinearForm((v, u), dot(grad(v), grad(u))) assert (a.mapping is F) l = LinearForm(v, x * y * v) assert (l.mapping is F)
def test_curldiv_2d(): domain = Square() W1 = VectorFunctionSpace('W1', domain) T1 = VectorFunctionSpace('T1', domain) w1 = VectorTestFunction(W1, name='w1') t1 = VectorTestFunction(T1, name='t1') mu = Constant('mu') # ... a = BilinearForm((w1, t1), rot(w1) * rot(t1) + mu * div(w1) * div(t1), name='a') print(a) print(atomize(a)) print(evaluate(a))
def test_calls_2d_2(): domain = Square() V = FunctionSpace('V', domain) x, y = V.coordinates u, v = [TestFunction(V, name=i) for i in ['u', 'v']] Un = Field('Un', V) # ... a = BilinearForm((v, u), dot(grad(u), grad(v))) expr = a(v, Un) print(evaluate(expr, verbose=True)) # ... # ... l = LinearForm(v, a(v, Un)) print(evaluate(l, verbose=True))
def test_latex_2d_1(): DIM = 2 domain = Domain('Omega', dim=DIM) V = ScalarFunctionSpace('V', domain) x, y = V.coordinates v = element_of(V, name='v') u = element_of(V, name='u') # F = element_of(V, name='F') int_0 = lambda expr: integral(domain, expr) assert (latex(grad(v)) == r'\nabla{v}') assert (latex(dot(grad(v), grad(u))) == r'\nabla{u} \cdot \nabla{v}') a = BilinearForm((v, u), int_0(dot(grad(v), grad(u)))) print(latex(a)) # assert(latex(a) == r'\int_{0}^{1}\int_{0}^{1} \nabla{v} \cdot \nabla{u} dxdy') b = LinearForm(v, int_0(sin(pi * x) * cos(pi * y) * v)) print(latex(b))
def test_equation_2d_6(): domain = Square() x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) b1 = 1. b2 = 0. b = Tuple(b1, b2) # right hand side f = x * y e = ElementDomain() area = Area(e) V = ScalarFunctionSpace('V', domain) u, v = [element_of(V, name=i) for i in ['u', 'v']] int_0 = lambda expr: integral(domain, expr) # ... expr = kappa * dot(grad(u), grad(v)) + dot(b, grad(u)) * v a = BilinearForm((v, u), int_0(expr)) # ... # ... expr = f * v l0 = LinearForm(v, int_0(expr)) # ... # ... expr = (-kappa * laplace(u) + dot(b, grad(u))) * dot(b, grad(v)) s1 = BilinearForm((v, u), int_0(expr)) expr = -f * dot(b, grad(v)) l1 = LinearForm(v, int_0(expr)) # ... # ... expr = (-kappa * laplace(u) + dot(b, grad(u))) * (dot(b, grad(v)) - kappa * laplace(v)) s2 = BilinearForm((v, u), int_0(expr)) expr = -f * (dot(b, grad(v)) - kappa * laplace(v)) l2 = LinearForm(v, int_0(expr)) # ... # ... expr = (-kappa * laplace(u) + dot(b, grad(u))) * (dot(b, grad(v)) + kappa * laplace(v)) s3 = BilinearForm((v, u), int_0(expr)) expr = -f * (dot(b, grad(v)) + kappa * laplace(v)) l3 = LinearForm(v, int_0(expr)) # ... # ... expr = a(v, u) + mu * area * s1(v, u) a1 = BilinearForm((v, u), expr) # ... # ... expr = a(v, u) + mu * area * s2(v, u) a2 = BilinearForm((v, u), expr) # ... # ... expr = a(v, u) + mu * area * s3(v, u) a3 = BilinearForm((v, u), expr) # ... bc = EssentialBC(u, 0, domain.boundary) # ... l = LinearForm(v, l0(v) + mu * area * l1(v)) eq_1 = Equation(a1, l, tests=v, trials=u, bc=bc) # ... # ... l = LinearForm(v, l0(v) + mu * area * l2(v)) eq_2 = Equation(a2, l, tests=v, trials=u, bc=bc) # ... # ... l = LinearForm(v, l0(v) + mu * area * l3(v)) eq_3 = Equation(a3, l, tests=v, trials=u, bc=bc)
def test_equation_2d_1(): V = ScalarFunctionSpace('V', domain) U = ScalarFunctionSpace('U', domain) v = element_of(V, name='v') u = element_of(U, name='u') x, y = domain.coordinates alpha = Constant('alpha') kappa = Constant('kappa', real=True) eps = Constant('eps', real=True) nn = NormalVector('nn') B1 = Boundary(r'\Gamma_1', domain) B2 = Boundary(r'\Gamma_2', domain) B3 = Boundary(r'\Gamma_3', domain) int_0 = lambda expr: integral(domain, expr) int_1 = lambda expr: integral(B1, expr) int_2 = lambda expr: integral(B2, expr) # ... bilinear/linear forms expr = dot(grad(v), grad(u)) a1 = BilinearForm((v, u), int_0(expr)) expr = v * u a2 = BilinearForm((v, u), int_0(expr)) expr = v * u a_B1 = BilinearForm((v, u), int_1(expr)) expr = x * y * v l1 = LinearForm(v, int_0(expr)) expr = cos(x + y) * v l2 = LinearForm(v, int_0(expr)) expr = x * y * v l_B2 = LinearForm(v, int_2(expr)) # ... # # ... # with pytest.raises(UnconsistentLhsError): # equation = Equation(a1, l1(v)) # # with pytest.raises(UnconsistentLhsError): # equation = Equation(l1(v), l1(v)) # # with pytest.raises(UnconsistentLhsError): # equation = Equation(a1(v,u) + alpha*a2(v,u), l1(v)) # # ... # # # ... # with pytest.raises(UnconsistentRhsError): # equation = Equation(a1(v,u), l1) # # with pytest.raises(UnconsistentRhsError): # equation = Equation(a1(v,u), a1(v,u)) # # with pytest.raises(UnconsistentRhsError): # equation = Equation(a1(v,u), l1(v) + l2(v)) # # ... # ... equation = Equation(a1, l1, tests=v, trials=u) # ... # ... a = BilinearForm((v, u), a1(v, u) + alpha * a2(v, u)) equation = Equation(a, l1, tests=v, trials=u) # ... # ... a = BilinearForm((v, u), a1(v, u) + a_B1(v, u)) equation = Equation(a, l1, tests=v, trials=u) # ... # ... a = BilinearForm((v, u), a1(v, u) + a_B1(v, u)) l = LinearForm(v, l1(v) + l2(v)) equation = Equation(a, l, tests=v, trials=u) # ... # ... a = BilinearForm((v, u), a1(v, u) + a_B1(v, u)) l = LinearForm(v, l1(v) + alpha * l_B2(v)) equation = Equation(a, l, tests=v, trials=u) # ... # ... using bc equation = Equation(a1, l1, tests=v, trials=u, bc=EssentialBC(u, 0, B1)) # ... # ... Poisson with Nitsch method g = cos(pi * x) * cos(pi * y) a0 = BilinearForm((u, v), int_0(dot(grad(u), grad(v)))) a_B1 = BilinearForm((u, v), -int_1(kappa * u * dot(grad(v), nn) - v * dot(grad(u), nn) + u * v / eps)) a = BilinearForm((u, v), a0(u, v) + a_B1(u, v)) l = LinearForm(v, int_0(g * v / eps) - int_1(kappa * v * g)) equation = Equation(a, l, tests=v, trials=u)
def test_bilinearity_2d_2(): domain = Domain('Omega', dim=DIM) V1 = FunctionSpace('V1', domain) V2 = FunctionSpace('V2', domain) U1 = FunctionSpace('U1', domain) U2 = FunctionSpace('U2', domain) W1 = VectorFunctionSpace('W1', domain) W2 = VectorFunctionSpace('W2', domain) T1 = VectorFunctionSpace('T1', domain) T2 = VectorFunctionSpace('T2', domain) v1 = TestFunction(V1, name='v1') v2 = TestFunction(V2, name='v2') u1 = TestFunction(U1, name='u1') u2 = TestFunction(U2, name='u2') w1 = VectorTestFunction(W1, name='w1') w2 = VectorTestFunction(W2, name='w2') t1 = VectorTestFunction(T1, name='t1') t2 = VectorTestFunction(T2, name='t2') V = ProductSpace(V1, V2) U = ProductSpace(U1, U2) x, y = V1.coordinates alpha = Constant('alpha') F = Field('F', space=V1) # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a = BilinearForm((v2, u2), a1(v2, u2), check=True) # ... # ... a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True) # ... # ... a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), check=True) a = BilinearForm((v2, u2), a1(v2, u2), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) a = BilinearForm((v2, u2), a1(v2, u2) + a2(v2, u2), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) a = BilinearForm(((v1, v2), (u1, u2)), a1(v1, u2) + a2(v2, u1), check=True) # ... # ... a = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), check=True) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, check=True) a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), check=True) a3 = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), check=True) a4 = BilinearForm((w1, u1), div(w1) * u1, check=True) a = BilinearForm(((w2, v2), (t2, u2)), a3(w2, t2) + a2(v2, u2) + a4(w2, u2), check=True) # ... # ... a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), check=True) # ... # ... a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), check=True) # ... # ... stokes V = VectorFunctionSpace('V', domain) W = FunctionSpace('W', domain) v = VectorTestFunction(V, name='v') u = VectorTestFunction(V, name='u') p = TestFunction(W, name='p') q = TestFunction(W, name='q') a = BilinearForm((v, u), inner(grad(v), grad(u)), check=True) b = BilinearForm((v, p), div(v) * p, check=True) A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), check=True) # ... ################################ # non bilinear forms ################################ # ... with pytest.raises(UnconsistentLinearExpressionError): a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)) + v1, check=True) # ... # ... with pytest.raises(UnconsistentLinearExpressionError): a = BilinearForm((v1, u1), v1**2 * u1, check=True) # ... # ... with pytest.raises(UnconsistentLinearExpressionError): a = BilinearForm((v1, u1), dot(grad(v1), grad(v1)), check=True)
def test_find_2d_1(): V = ScalarFunctionSpace('V', domain) U = ScalarFunctionSpace('U', domain) v = element_of(V, name='v') u = element_of(U, name='u') x,y = domain.coordinates alpha = Constant('alpha') kappa = Constant('kappa', real=True) eps = Constant('eps', real=True) B1 = Boundary(r'\Gamma_1', domain) B2 = Boundary(r'\Gamma_2', domain) B3 = Boundary(r'\Gamma_3', domain) int_0 = lambda expr: integral(domain , expr) int_1 = lambda expr: integral(B1, expr) int_2 = lambda expr: integral(B2, expr) # ... bilinear/linear forms expr = dot(grad(v), grad(u)) a1 = BilinearForm((v,u), int_0(expr)) expr = v*u a2 = BilinearForm((v,u), int_0(expr)) expr = v*u a_B1 = BilinearForm((v, u), int_1(expr)) expr = x*y*v l1 = LinearForm(v, int_0(expr)) expr = cos(x+y)*v l2 = LinearForm(v, int_0(expr)) expr = x*y*v l_B2 = LinearForm(v, int_1(expr)) # ... # ... equation = find(u, forall=v, lhs=a1(u,v), rhs=l1(v)) # ... # ... a = BilinearForm((v,u), a1(v,u) + alpha*a2(v,u)) equation = find(u, forall=v, lhs=a(u,v), rhs=l1(v)) # ... # ... a = BilinearForm((v,u), a1(v,u) + a_B1(v,u)) equation = find(u, forall=v, lhs=a(u,v), rhs=l1(v)) # ... # ... a = BilinearForm((v,u), a1(v,u) + a_B1(v,u)) l = LinearForm(v, l1(v) + l2(v)) equation = find(u, forall=v, lhs=a(u,v), rhs=l(v)) # ... # ... a = BilinearForm((v,u), a1(v,u) + a_B1(v,u)) l = LinearForm(v, l1(v) + alpha*l_B2(v)) equation = find(u, forall=v, lhs=a(u,v), rhs=l(v)) # ... # ... using bc equation = find(u, forall=v, lhs=a(u,v), rhs=l(v), bc=EssentialBC(u, 0, B1))
def test_stabilization_2d_1(): domain = Domain('Omega', dim=2) x, y = domain.coordinates kappa = Constant('kappa', is_real=True) mu = Constant('mu', is_real=True) b1 = 1. b2 = 0. b = Tuple(b1, b2) # right hand side f = x * y e = ElementDomain() area = Area(e) V = FunctionSpace('V', domain) u, v = [TestFunction(V, name=i) for i in ['u', 'v']] # ... expr = kappa * dot(grad(u), grad(v)) + dot(b, grad(u)) * v a = BilinearForm((v, u), expr) # ... # ... expr = f * v l = LinearForm(v, expr) # ... # ... expr = (-kappa * laplace(u) + dot(b, grad(u))) * dot(b, grad(v)) s1 = BilinearForm((v, u), expr) expr = -f * dot(b, grad(v)) l1 = LinearForm(v, expr) # ... # ... expr = (-kappa * laplace(u) + dot(b, grad(u))) * (dot(b, grad(v)) - kappa * laplace(v)) s2 = BilinearForm((v, u), expr) expr = -f * (dot(b, grad(v)) - kappa * laplace(v)) l2 = LinearForm(v, expr) # ... # ... expr = (-kappa * laplace(u) + dot(b, grad(u))) * (dot(b, grad(v)) + kappa * laplace(v)) s3 = BilinearForm((v, u), expr) expr = -f * (dot(b, grad(v)) + kappa * laplace(v)) l3 = LinearForm(v, expr) # ... # ... expr = a(v, u) + mu * area * s1(v, u) a1 = BilinearForm((v, u), expr) # ... # ... expr = a(v, u) + mu * area * s2(v, u) a2 = BilinearForm((v, u), expr) # ... # ... expr = a(v, u) + mu * area * s3(v, u) a3 = BilinearForm((v, u), expr) # ... print(a1) print(evaluate(a1, verbose=True)) print('') print(a2) print(evaluate(a2, verbose=True)) print('') print(a3) print(evaluate(a3, verbose=True)) print('')
def test_calls_2d(): domain = Domain('Omega', dim=DIM) V1 = FunctionSpace('V1', domain) V2 = FunctionSpace('V2', domain) U1 = FunctionSpace('U1', domain) U2 = FunctionSpace('U2', domain) W1 = VectorFunctionSpace('W1', domain) W2 = VectorFunctionSpace('W2', domain) T1 = VectorFunctionSpace('T1', domain) T2 = VectorFunctionSpace('T2', domain) v1 = TestFunction(V1, name='v1') v2 = TestFunction(V2, name='v2') u1 = TestFunction(U1, name='u1') u2 = TestFunction(U2, name='u2') w1 = VectorTestFunction(W1, name='w1') w2 = VectorTestFunction(W2, name='w2') t1 = VectorTestFunction(T1, name='t1') t2 = VectorTestFunction(T2, name='t2') V = ProductSpace(V1, V2) U = ProductSpace(U1, U2) x, y = V1.coordinates alpha = Constant('alpha') F = Field('F', space=V1) # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') print(a1) print(atomize(a1)) print(evaluate(a1)) print('') expr = a1(v2, u2) a = BilinearForm((v2, u2), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a1 = BilinearForm((v1, u1), dot(grad(v1), grad(u1)), name='a1') expr = a1(v2, u2) a = BilinearForm((v2, u2), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') expr = a1(v2, u2) + a2(v2, u2) a = BilinearForm((v2, u2), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') expr = a1(v1, u2) print('> before = ', expr) expr = expr.subs(u2, u1) print('> after = ', expr) print('') expr = a1(v1, u2) + a1(v2, u2) print('> before = ', expr) expr = expr.subs(u2, u1) print('> after = ', expr) print('') # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') expr = a1(v1, u2) + a2(v2, u1) a = BilinearForm(((v1, v2), (u1, u2)), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) print('') # ... # ... a = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), name='a') print(a) print(atomize(a)) print(evaluate(a)) # ... # ... a1 = BilinearForm((v1, u1), u1 * v1, name='a1') a2 = BilinearForm((v1, u1), dx(u1) * dx(v1), name='a2') a3 = BilinearForm((w1, t1), rot(w1) * rot(t1) + div(w1) * div(t1), name='a3') a4 = BilinearForm((w1, u1), div(w1) * u1, name='a4') expr = a3(w2, t2) + a2(v2, u2) + a4(w2, u2) a = BilinearForm(((w2, v2), (t2, u2)), expr, name='a') print(a) print(atomize(a)) print(evaluate(a)) # ... # ... a1 = BilinearForm((v1, u1), laplace(u1) * laplace(v1), name='a1') print(a1) print(atomize(a1)) print(evaluate(a1)) print('') # ... # ... a1 = BilinearForm((v1, u1), inner(hessian(u1), hessian(v1)), name='a1') print('================================') print(a1) print(atomize(a1)) print(evaluate(a1)) print('') # ... # ... l1 = LinearForm(v1, x * y * v1, name='11') expr = l1(v2) l = LinearForm(v2, expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... l1 = LinearForm(v1, x * y * v1, name='l1') l2 = LinearForm(v2, cos(x + y) * v2, name='l2') expr = l1(u1) + l2(u2) l = LinearForm((u1, u2), expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... l1 = LinearForm(v1, x * y * v1, name='l1') l2 = LinearForm(v2, cos(x + y) * v2, name='l2') expr = l1(u1) + alpha * l2(u2) l = LinearForm((u1, u2), expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... l1 = LinearForm(v1, x * y * v1, name='l1') l2 = LinearForm(w1, div(w1), name='l2') expr = l1(v2) + l2(w2) l = LinearForm((v2, w2), expr, name='1') print(l) print(atomize(l)) print(evaluate(l)) # ... # ... I1 = Integral(x * y, domain, name='I1') print(I1) print(atomize(I1)) print(evaluate(I1)) # ... # ... expr = F - cos(2 * pi * x) * cos(3 * pi * y) expr = dot(grad(expr), grad(expr)) I2 = Integral(expr, domain, name='I2') print(I2) print(atomize(I2)) print(evaluate(I2)) # ... # ... expr = F - cos(2 * pi * x) * cos(3 * pi * y) expr = dot(grad(expr), grad(expr)) I2 = Integral(expr, domain, name='I2') print(I2) print(atomize(I2)) print(evaluate(I2)) # ... # ... stokes V = VectorFunctionSpace('V', domain) W = FunctionSpace('W', domain) v = VectorTestFunction(V, name='v') u = VectorTestFunction(V, name='u') p = TestFunction(W, name='p') q = TestFunction(W, name='q') a = BilinearForm((v, u), inner(grad(v), grad(u)), name='a') b = BilinearForm((v, p), div(v) * p, name='b') A = BilinearForm(((v, q), (u, p)), a(v, u) - b(v, p) + b(u, q), name='A') print(A) print(atomize(A)) print(evaluate(A))
def test_boundary_2d_1(): domain = Domain('Omega', dim=DIM) V1 = FunctionSpace('V1', domain) V2 = FunctionSpace('V2', domain) U1 = FunctionSpace('U1', domain) U2 = FunctionSpace('U2', domain) W1 = VectorFunctionSpace('W1', domain) W2 = VectorFunctionSpace('W2', domain) T1 = VectorFunctionSpace('T1', domain) T2 = VectorFunctionSpace('T2', domain) v1 = TestFunction(V1, name='v1') v2 = TestFunction(V2, name='v2') u1 = TestFunction(U1, name='u1') u2 = TestFunction(U2, name='u2') w1 = VectorTestFunction(W1, name='w1') w2 = VectorTestFunction(W2, name='w2') t1 = VectorTestFunction(T1, name='t1') t2 = VectorTestFunction(T2, name='t2') x, y = V1.coordinates alpha = Constant('alpha') B1 = Boundary(r'\Gamma_1', domain) B2 = Boundary(r'\Gamma_2', domain) B3 = Boundary(r'\Gamma_3', domain) # ... with pytest.raises(UnconsistentError): expr = dot(grad(v1), grad(u1)) + v1 * trace_0(u1, B1) a = BilinearForm((v1, u1), expr, name='a') # ... # ... with pytest.raises(UnconsistentError): expr = v1 * trace_0(u1, B3) + v1 * trace_1(grad(u1), B3) + u1 * trace_0(v1, B2) a1 = BilinearForm((v1, u1), expr, name='a1') # ... # ... expr = dot(grad(v1), grad(u1)) a_0 = BilinearForm((v1, u1), expr, name='a_0') expr = v1 * trace_0(u1, B1) a_bnd = BilinearForm((v1, u1), expr, name='a_bnd') expr = a_0(v1, u1) + a_bnd(v1, u1) a = BilinearForm((v1, u1), expr, name='a') print(a) print(evaluate(a, verbose=True)) print('') # import sys; sys.exit(0) # ... # ... expr = v1 * trace_0(u1, B1) + v1 * trace_1(grad(u1), B1) a1 = BilinearForm((v1, u1), expr, name='a1') expr = u1 * trace_1(grad(v1), B2) a2 = BilinearForm((v1, u1), expr, name='a2') expr = a1(v2, u2) + a2(v2, u2) # as expected, we can define the form call, but we cannot create a Bilinear # form out of it. # TODO add assert on exception type # a = BilinearForm((v2, u2), expr, name='a') print(expr) print('') # ... # ... expr = v1 * trace_0(u1, B1) a0 = BilinearForm((v1, u1), expr, name='a0') expr = v1 * trace_1(grad(u1), B1) a1 = BilinearForm((v1, u1), expr, name='a1') expr = v1 * trace_1(grad(u1), B2) a2 = BilinearForm((v1, u1), expr, name='a2') expr = dot(grad(u1), grad(v1)) a3 = BilinearForm((v1, u1), expr, name='a3') expr = u1 * v1 a4 = BilinearForm((v1, u1), expr, name='a4') # TODO Mul not treated yet # expr = a0(v2, u2) + a1(v2, u2) + alpha * a2(v2, u2) + a3(v2, u2) + alpha*a4(v2, u2) # a = BilinearForm((v2, u2), expr, name='a') ## print(expr) # print(evaluate(expr, verbose=True)) # print('') # # print(evaluate(a, verbose=True)) # print('') # expr = a(v2, u2) + a1(v2, u2) # b = BilinearForm((v2, u2), expr, name='b') # print(b) # print(evaluate(b, verbose=True)) # ... # ... g = Tuple(x**2, y**2) expr = v1 * trace_1(g, B1) l1 = LinearForm(v1, expr, name='l1') print(l1) # print(atomize(l1)) # print(evaluate(l1)) print('')