def simple_root(self, i): """The ith simple root of F_4 Every lie algebra has a unique root system. Given a root system Q, there is a subset of the roots such that an element of Q is called a simple root if it cannot be written as the sum of two elements in Q. If we let D denote the set of simple roots, then it is clear that every element of Q can be written as a linear combination of elements of D with all coefficients non-negative. Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("F4") >>> c.simple_root(3) [0, 0, 0, 1] """ if i < 3: return self.basic_root(i-1, i) if i == 3: root = [0]*4 root[3] = 1 return root if i == 4: root = [Rational(-1, 2)]*4 return root
def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) with warns_deprecated_sympy(): (fr, fr_star) = KM.kanes_equations(FL, BL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qd: assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert A.subs(upright_nominal).subs(q3d, 1/sqrt(3)).eigenvals() == {0: 8}
def positive_roots(self): """ This method generates all the positive roots of A_n. This is half of all of the roots of E_n; by multiplying all the positive roots by -1 we get the negative roots. Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("A3") >>> c.positive_roots() {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]} """ n = self.n if n == 6: posroots = {} k = 0 for i in range(n - 1): for j in range(i + 1, n - 1): k += 1 root = self.basic_root(i, j) posroots[k] = root k += 1 root = self.basic_root(i, j) root[i] = 1 posroots[k] = root root = [ Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2) ] for a in range(0, 2): for b in range(0, 2): for c in range(0, 2): for d in range(0, 2): for e in range(0, 2): if (a + b + c + d + e) % 2 == 0: k += 1 if a == 1: root[0] = Rational(-1, 2) if b == 1: root[1] = Rational(-1, 2) if c == 1: root[2] = Rational(-1, 2) if d == 1: root[3] = Rational(-1, 2) if e == 1: root[4] = Rational(-1, 2) posroots[k] = root return posroots if n == 7: posroots = {} k = 0 for i in range(n - 1): for j in range(i + 1, n - 1): k += 1 root = self.basic_root(i, j) posroots[k] = root k += 1 root = self.basic_root(i, j) root[i] = 1 posroots[k] = root k += 1 posroots[k] = [0, 0, 0, 0, 0, 1, 1, 0] root = [ Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2) ] for a in range(0, 2): for b in range(0, 2): for c in range(0, 2): for d in range(0, 2): for e in range(0, 2): for f in range(0, 2): if (a + b + c + d + e + f) % 2 == 0: k += 1 if a == 1: root[0] = Rational(-1, 2) if b == 1: root[1] = Rational(-1, 2) if c == 1: root[2] = Rational(-1, 2) if d == 1: root[3] = Rational(-1, 2) if e == 1: root[4] = Rational(-1, 2) if f == 1: root[5] = Rational(1, 2) posroots[k] = root return posroots if n == 8: posroots = {} k = 0 for i in range(n): for j in range(i + 1, n): k += 1 root = self.basic_root(i, j) posroots[k] = root k += 1 root = self.basic_root(i, j) root[i] = 1 posroots[k] = root root = [ Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2) ] for a in range(0, 2): for b in range(0, 2): for c in range(0, 2): for d in range(0, 2): for e in range(0, 2): for f in range(0, 2): for g in range(0, 2): if (a + b + c + d + e + f + g) % 2 == 0: k += 1 if a == 1: root[0] = Rational(-1, 2) if b == 1: root[1] = Rational(-1, 2) if c == 1: root[2] = Rational(-1, 2) if d == 1: root[3] = Rational(-1, 2) if e == 1: root[4] = Rational(-1, 2) if f == 1: root[5] = Rational(1, 2) if g == 1: root[6] = Rational(1, 2) posroots[k] = root return posroots
def positive_roots(self): """Generate all the positive roots of A_n This is half of all of the roots of F_4; by multiplying all the positive roots by -1 we get the negative roots. Examples ======== >>> from sympy.liealgebras.cartan_type import CartanType >>> c = CartanType("A3") >>> c.positive_roots() {1: [1, -1, 0, 0], 2: [1, 0, -1, 0], 3: [1, 0, 0, -1], 4: [0, 1, -1, 0], 5: [0, 1, 0, -1], 6: [0, 0, 1, -1]} """ n = self.n posroots = {} k = 0 for i in range(0, n-1): for j in range(i+1, n): k += 1 posroots[k] = self.basic_root(i, j) k += 1 root = self.basic_root(i, j) root[j] = 1 posroots[k] = root for i in range(0, n): k += 1 root = [0]*n root[i] = 1 posroots[k] = root k += 1 root = [Rational(1, 2)]*n posroots[k] = root for i in range(1, 4): k += 1 root = [Rational(1, 2)]*n root[i] = Rational(-1, 2) posroots[k] = root posroots[k+1] = [Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)] posroots[k+2] = [Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)] posroots[k+3] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)] posroots[k+4] = [Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(-1, 2)] return posroots
def matrix_form(self, weylelt): """ This method takes input from the user in the form of products of the generating reflections, and returns the matrix corresponding to the element of the Weyl group. Since each element of the Weyl group is a reflection of some type, there is a corresponding matrix representation. This method uses the standard representation for all the generating reflections. Examples ======== >>> from sympy.liealgebras.weyl_group import WeylGroup >>> f = WeylGroup("F4") >>> f.matrix_form('r2*r3') Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]]) """ elts = list(weylelt) reflections = elts[1::3] n = self.cartan_type.rank() if self.cartan_type.series == "A": matrixform = eye(n + 1) for elt in reflections: a = int(elt) mat = eye(n + 1) mat[a - 1, a - 1] = 0 mat[a - 1, a] = 1 mat[a, a - 1] = 1 mat[a, a] = 0 matrixform *= mat return matrixform if self.cartan_type.series == "D": matrixform = eye(n) for elt in reflections: a = int(elt) mat = eye(n) if a < n: mat[a - 1, a - 1] = 0 mat[a - 1, a] = 1 mat[a, a - 1] = 1 mat[a, a] = 0 matrixform *= mat else: mat[n - 2, n - 1] = -1 mat[n - 2, n - 2] = 0 mat[n - 1, n - 2] = -1 mat[n - 1, n - 1] = 0 matrixform *= mat return matrixform if self.cartan_type.series == "G": matrixform = eye(3) for elt in reflections: a = int(elt) if a == 1: gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]]) matrixform *= gen1 else: gen2 = Matrix( [ [Rational(2, 3), Rational(2, 3), Rational(-1, 3)], [Rational(2, 3), Rational(-1, 3), Rational(2, 3)], [Rational(-1, 3), Rational(2, 3), Rational(2, 3)], ] ) matrixform *= gen2 return matrixform if self.cartan_type.series == "F": matrixform = eye(4) for elt in reflections: a = int(elt) if a == 1: mat = Matrix( [[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]] ) matrixform *= mat elif a == 2: mat = Matrix( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]] ) matrixform *= mat elif a == 3: mat = Matrix( [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]] ) matrixform *= mat else: mat = Matrix( [ [ Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2), ], [ Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2), ], [ Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2), ], [ Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2), ], ] ) matrixform *= mat return matrixform if self.cartan_type.series == "E": matrixform = eye(8) for elt in reflections: a = int(elt) if a == 1: mat = Matrix( [ [ Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4), ], [ Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4), ], [ Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4), ], [ Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4), ], [ Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4), ], [ Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4), ], [ Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4), ], [ Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4), ], ] ) matrixform *= mat elif a == 2: mat = eye(8) mat[0, 0] = 0 mat[0, 1] = -1 mat[1, 0] = -1 mat[1, 1] = 0 matrixform *= mat else: mat = eye(8) mat[a - 3, a - 3] = 0 mat[a - 3, a - 2] = 1 mat[a - 2, a - 3] = 1 mat[a - 2, a - 2] = 0 matrixform *= mat return matrixform if self.cartan_type.series == "B" or self.cartan_type.series == "C": matrixform = eye(n) for elt in reflections: a = int(elt) mat = eye(n) if a == 1: mat[0, 0] = -1 matrixform *= mat else: mat[a - 2, a - 2] = 0 mat[a - 2, a - 1] = 1 mat[a - 1, a - 2] = 1 mat[a - 1, a - 1] = 0 matrixform *= mat return matrixform